Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Quang Minh

Cho các số a,b,c,d,e không âm. CMR:
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

Nguyễn Thành Trương
31 tháng 1 2020 lúc 21:39

Bất đẳng thức đã cho tương đương với:
\[{a^2} + {b^2} + {c^2} + {d^2} + {e^2} - a\left( {b + c + d + e} \right) \ge 0\]
\[ \Leftrightarrow {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2} \ge 0\]
Xét tam thức bậc hai: $f\left( a \right) = {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2}$
Ta có: $\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)$
Theo bất đẳng thức BCS, ta có: \[{\left( {b + c + d + e} \right)^2} \le \left( {1 + 1 + 1 + 1} \right)\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) = 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)\]
Suy ra: \[\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) \le 0 \Rightarrow f\left( a \right) \ge 0,\,\,\forall a \in \mathbb{R} \]
Từ đó ta có đpcm.

Khách vãng lai đã xóa
Bùi Thị Huyền
31 tháng 1 2020 lúc 21:10
https://i.imgur.com/8dtxBfV.jpg
Khách vãng lai đã xóa
Nguyễn Thành Trương
31 tháng 1 2020 lúc 21:43

Cách khác:

\( {a^2} + {b^2} + {c^2} + {d^2} + {e^2} \ge a\left( {b + c + d + e} \right)\\ \Leftrightarrow 4{a^2} + 4{b^2} + 4{c^2} + 4{d^2} + 4{e^2} - 4ab - 4ac - 4ad - 4ae \ge 0\\ \Leftrightarrow \left( {{a^2} - 4ab + 4{b^2}} \right) + \left( {{a^2} - 4ac + 4{c^2}} \right) + \left( {{a^2} - 4ad + 4{d^2}} \right) + \left( {{a^2} - 4ae + 4{e^2}} \right) \ge 0\\ \Leftrightarrow {\left( {a - 2b} \right)^2} + {\left( {a - 2c} \right)^2} + {\left( {a - 2d} \right)^2} + {\left( {a - 2e} \right)^2} \ge 0 \)

Bất đẳng thức trên đúng, mà các phép biến đổi là tương đương \(\rightarrow \text{ĐPCM}\)

Dấu "=" xảy ra khi \(a=2b=2c=2d=2e\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nano Thịnh
Xem chi tiết
Toán Chuyên Học
Xem chi tiết
Gay\
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
TFBoys
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Rose Princess
Xem chi tiết
Lê Thị Thế Ngọc
Xem chi tiết
vietdat vietdat
Xem chi tiết