Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Toán Chuyên Học

Cho các số dương a,b,c,d,e. Chứng minh bất đẳng thức:

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+e}+\frac{d}{e+a}+\frac{e}{a+b}\ge\frac{5}{2}\)

Trần Thanh Phương
14 tháng 8 2019 lúc 6:14

Áp dụng bất đẳng thức Cô-si :

\(\frac{a}{b+c}+\frac{b+c}{4a}\ge2\sqrt{\frac{a\left(b+c\right)}{4a\left(b+c\right)}}=1\)

Tương tự với các phân thức còn lại, sau đó cộng theo vế ta được :

\(VT+\frac{b+c}{4a}+\frac{c+d}{4b}+\frac{d+e}{4c}+\frac{e+a}{4d}+\frac{a+b}{4e}\ge5\)

\(\Leftrightarrow VT\ge5-\frac{1}{4}\left(\frac{b+c}{a}+\frac{c+d}{b}+\frac{d+e}{c}+\frac{e+a}{d}+\frac{a+b}{e}\right)\)

\(=5-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}+\frac{e}{c}+\frac{e}{d}+\frac{a}{d}+\frac{a}{e}+\frac{b}{e}\right)\)

\(\ge5-\frac{1}{4}\cdot10\sqrt[10]{\frac{b\cdot c\cdot c\cdot d\cdot d\cdot e\cdot e\cdot a\cdot a\cdot b}{a\cdot a\cdot b\cdot b\cdot c\cdot c\cdot d\cdot d\cdot e\cdot e}}=5-\frac{1}{4}\cdot10=\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=e=1\)


Các câu hỏi tương tự
Nano Thịnh
Xem chi tiết
le quang minh
Xem chi tiết
@Nk>↑@
Xem chi tiết
Nguyễn Thu Diệp
Xem chi tiết
Nano Thịnh
Xem chi tiết
Hoa Nguyễn Lệ
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
vietdat vietdat
Xem chi tiết
Nhi Yến
Xem chi tiết