Áp dụng BĐT Cauchy-Schwarz:
\(VT\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra <=> \(a=b=c\)
Cách 2
Áp dụng bđt AM-GM ta có
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)
Tương tự \(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b\),\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
Cộng từng vế các bđt trên => đpcm
Dấu "=" xảy ra khi a=b=c