1/ rút gọn biểu thức sau: (3x-1)^2+2(3x-1)(2x+1)+(2x+1)^2
2/ phân tích đa thức sau thành nhân tử:
a) x^2-9+(x-3)
b) x^3-3x^2+3x-1
Câu 1
Rút gọn các biểu thức sau:
a. 2x(3x + 2) - 3x(2x + 3)
b. (x + 2)3 + (x - 3)2 - x2(x + 5)
c. (3x3 - 4x2 + 6x) : 3x
Câu 2
Phân tích đa thức sau thành nhân tử: 2x3 - 12x2 + 18x
Câu 3
Tìm x, biết: 3x(x - 5) - x2 + 25 = 0
Câu 4 Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Câu 5 Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5y2 + 4xy + 6x + 16y + 32
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
Câu 2:
\(2x^3-12x^2+18x=2x\left(x^2-6x+9\right)=2x\left(x^2-2.x.3+3^2\right)=2x\left(x-3\right)^2\)
1. Phân tích đa thức thành nhân tử
(a - b) (5x + 3) + 2(a - b)
2. Thực hiện phép tính
a) 3x2 (x - 1)
b) (2x + 3)2 - 4 (x - 3) (x + 3)
3. Rút gọn biểu thức
B= \(\dfrac{2X^3-4X^2+2X}{3X^2-3X}\)
Bài 1: Rút gọn biểu thức:
a) 2x(3x-5)-6x2 b) (x+3)(1-x)+(x-2)(x+2) c) (3x+1)2-(1+3x)(6x-2)+(3x-1)2
Bài 2: Phân tích đa thức thành nhân tử:
a) 9x2-1 b) 2(x-1)+x2-x c) 3x2+14x-5
Bài 3: Tìm x biết:
a) 2x(x-1)-2x2=4 b) x(x-3)-(x+2)(x-1)=5 c) 4x2-25+(2x+5)2=0
Bài 4: Cho tam giác ABC , có D là trung điểm đoạn thẳng BC , E là trung điểm của AB lấy điểm F đối xứng với điểm D qua E .
a) Chứng minh tứ giác FADB là hình bình hành.
b) Kẻ FG vuông với AB ; DH vuông với AB ; (G;HϵAB). Chứng minh FD=AC;\(\widehat{BFH}\)=\(\widehat{ADG}\).
c) Vẽ điểm Q đối xứng với điểm C qua A , DQ cắt đoạn AB tại điểm I , M là trung điểm AD.
Chứng minh F , M , I thẳng hàng
2:
a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)
b: \(2\left(x-1\right)+x^2-x\)
\(=2\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+2\right)\)
c: \(3x^2+14x-5\)
\(=3x^2+15x-x-5\)
\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)
3:
a: \(2x\left(x-1\right)-2x^2=4\)
=>\(2x^2-2x-2x^2=4\)
=>-2x=4
=>x=-2
b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)
=>\(x^2-3x-\left(x^2+x-2\right)=5\)
=>\(x^2-3x-x^2-x+2=5\)
=>-4x=3
=>x=-3/4
c: \(4x^2-25+\left(2x+5\right)^2=0\)
=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)
=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)
=>4x(2x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
1.Khai triển và rút gọn các biểu thức sau:
a). (2x-3)2-(4x-1).(x+2)
b). (3x+2).(3x-2)-(3x-1)2
2.Phân tích đa thức thành nhân tử:
a). x2+y2-9-2xy
b). 4x2-5x-9
3.Tìm x:
a). (x-3)2-(x+1).(x-2)=5
b). 3x2+5x-8=0
Bài 2:
a) \(x^2+y^2-9-2xy\)
\(=\left(x^2-2xy+y^2\right)-3^2\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
b) \(4x^2-5x-9\)
\(=4x^2+4x-9x-9\)
\(=4x\left(x+1\right)-9\left(x+1\right)\)
\(=\left(x+1\right)\left(4x-9\right)\)
\(\left(2x-3\right)^2-\left(4x-1\right)\left(x+2\right)=4x^2-12x+9-4x^2-7x+2=-19x+11\)
\(\left(3x+2\right)\left(3x-2\right)-\left(3x-1\right)^2=9x^2-4-9x^2+6x-1=6x-5\)
\(x^2+y^2-9-2xy=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\)
\(4x^2-5x-9=\left(4x-9\right)\left(x+1\right)\)
\(\left(x-3\right)^2-\left(x-1\right)\left(x-2\right)=5\Leftrightarrow x^2-6x+9-x^2+3x-2=5\)
\(\Leftrightarrow-3x=-2\Leftrightarrow x=x=\frac{2}{3}\)
\(3x^2+5x-8=0\Leftrightarrow\left(x-1\right)\left(3x+8\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)
Bài 2:
a) \(\left(x-3\right)^2-\left(x+1\right)\left(x-2\right)=5\left(1\right)\)
Đặt \(\left(x-2\right)=y\)thay vào (1) ta được:
\(\left(y-1\right)^2-\left(y+3\right)y=5\)
\(\Leftrightarrow y^2-2y+1-\left(y^2+3y\right)-5=0\)
\(\Leftrightarrow y^2-2y+1-y^2-3y-5=0\)
\(\Leftrightarrow-5y-4=0\)
\(\Leftrightarrow-5y=4\)
\(\Leftrightarrow y=\frac{-4}{5}\left(2\right)\)
Thay x-2 =y vào (2) ta được
\(\Leftrightarrow x-2=\frac{-4}{5}\)
\(\Leftrightarrow x=\frac{6}{5}\)
Vậy ...
b) \(3x^2+5x-8=0\)
\(\Leftrightarrow3x^2-3x+8x-8=0\)
\(\Leftrightarrow3x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\3x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-8}{3}\end{cases}}}\)
Vậy ...
Sử dụng phương pháp đặt nhân tử chung phân tích các đa thức sau thành nhân tử.( nhớ rút gọn)
1) x (x . 1 )+( 1 - x )^2
2) 2x ( x - 2 )-(x - 2 )^2
3) 3x ( x - 1)^2 - ( 1 - x )^3
4) 3x ( x + 2 ) - 5 (x + 2)^2
1) \(x\left(x-1\right)+\left(1-x\right)^2\)
\(=x\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x-1\right)\left(x+x-1\right)\)
\(=\left(x-1\right)\left(2x-1\right)\)
2) \(2x\left(x-2\right)-\left(x-2\right)^2\)
\(=\left(x-2\right)\left[2x-\left(x-2\right)\right]\)
\(=\left(x-2\right)\left(2x-x+2\right)\)
\(=\left(x-2\right)\left(x+2\right)\)
3) \(3x\left(x-1\right)^2-\left(1-x\right)^3\)
\(=3x\left(x-1\right)^2+\left(x-1\right)^3\)
\(=\left(x-1\right)^2\left(3x+x-1\right)\)
\(=\left(x-1\right)^2\left(4x-1\right)\)
4) \(3x\left(x+2\right)-5\left(x+2\right)^2\)
\(=\left(x+2\right)\left[3x-5\left(x+2\right)\right]\)
\(=\left(x+2\right)\left(3x-5x-10\right)\)
\(=\left(x+2\right)\left(-2x-10\right)\)
\(=-2\left(x+2\right)\left(x+5\right)\)
Phân tích đa thức thành nhân tử
27y2-9(x+y)2
Rút gọn biểu thức
(2x4-x3+3x2): (-1/3x)
Phân tích đa thức thành nhân tử
27y2-9(x+y)2=\(9\left(3y^2-\left(x+y\right)^2\right)\)
=\(9\left(\sqrt{3}y+x+y\right)\left(\sqrt{3}y-x-y\right)\)
Rút gọn biểu thức
(2x4-x3+3x2): (-1/3x)
=\(\frac{2x^4-x^3+3x^2}{-\frac{1}{3x}}=3x^3\left(-2x^2+x-3\right)\)
Câu 1 Giá trị của biểu thức x^3-3x^2+3x-1 tại x=11 là
A.1001 B.1002 C.1000 D.999
Câu 2 Phân tích đa thức x^3-4x ta được?
Câu 3 Kết quả phép tính chia đa thức A=2x^2+3x-2 cho đa thức B=2x-1
Câu 4 Phân thức 3x-6/x^2-4 được rút gọn thành ?
Câu 1: C
Câu 2: =x(x-2)*(x+2)
Bài 1: chứng minh rằng: x^2 - 2x +2 >0 với mọi x
Bài 2 : tìm số a để đa thức x^3 - 3x^2 +5x +a chia hết cho x-2
Bài 3: Tính nhanh các gt của biểu thức sau:
a) 53^2 + 47^2 +94.53
b) 50^2 - 49^2 + 48^2 - 47^2 + 2^2 - 1^2
c) 57^2 + 26.87 + 13^2
Bài 4: phân tích các đa thức sau thành nhân tử:
a) x^2 -5x+4
b) x^2 - y^2 +2x +1
c) x^2 - y^2 - 5x +5y
d) 5x^3 - 5x^2y - 10x + 10xy
e) 2x^2 - 5x +7
Bài 5: phân tích các đa thức sau thành nhân tử
a) x^3 - 3x^2 +1 -3x
b) 3x^2 -6xy + 3y^2 -12z^2
c) x^2 - 3x +2
Bài 6: Rút gọn các biểu thức sau
a) (2x+1)^2 + 2(4x^2-a) + ( 2x-1)^2
b) (x^2 - 1)(x+2) - (x-2)(x^2 +2x +4)
giúp mình giải hết với ạ.mk cảm ơn nhiều
Bài 1:
Ta có: \(x^2-2x+2=x^2-2x+1+1\)
\(=\left(x^2-2x+1\right)+1\)
\(=\left(x-1\right)^2+1\)
Ta thấy rằng: \(\left(x-1\right)^2\ge0\) ( Với mọi \(x\in Z\) )
mà 1 > 0
=> \(\left(x-1\right)^2+1\ge0\)
<=> \(x^2-2x+1\ge0\)
Bài 3:
a) 53^2 + 47^2 + 94.53
= 53^2 + 47^2 + 2.47.53
= ( 53 + 47 )^2
= 100^2
= 10000
b) 50^2 - 49^2 + 48^2 - 47^2 + 2^2 - 1^2
= ( 50^2 - 49^2 ) + ( 48^2 - 47^2 ) + ( 2^2 - 1^2 )
= (50+49).(50-49) + (48+47).(48-47) + (2+1).(2-1)
= 50 + 49 + 48 + 47 + 2 + 1
= (49 + 1) + (48 + 2) + 50 + 47
= 50 + 50 + 50 + 47
= 197
Bài 1: chứng minh rằng: x^2 - 2x +2 >0 với mọi x
Bài 2 : tìm số a để đa thức x^3 - 3x^2 +5x +a chia hết cho x-2
Bài 3: Tính nhanh các gt của biểu thức sau:
a) 53^2 + 47^2 +94.53
b) 50^2 - 49^2 + 48^2 - 47^2 + 2^2 - 1^2
c) 57^2 + 26.87 + 13^2
Bài 4: phân tích các đa thức sau thành nhân tử:
a) x^2 -5x+4
b) x^2 - y^2 +2x +1
c) x^2 - y^2 - 5x +5y
d) 5x^3 - 5x^2y - 10x + 10xy
e) 2x^2 - 5x +7
Bài 5: phân tích các đa thức sau thành nhân tử
a) x^3 - 3x^2 +1 -3x
b) 3x^2 -6xy + 3y^2 -12z^2
c) x^2 - 3x +2
Bài 6: Rút gọn các biểu thức sau
a) (2x+1)^2 + 2(4x^2-a) + ( 2x-1)^2
b) (x^2 - 1)(x+2) - (x-2)(x^2 +2x +4)
giúp mình giải hết với ạ.mk cảm ơn nhiều
Bài 1 :
x2-2x+2>0 với mọi x
=x2-2.x.1/4+1/16+31/16
=(x-1/4)2 + 31/16
Vì (x-1/4)2 \(\ge\) 0 nên (x-1/4)2 + 31/16 \(\ge\) 0 với mọi x (đfcm)
Phân tích đa thức thành nhân tử 2x2-x+8
Rút gọn biểu thức (x2+3)-2x2(x2+3x-1)