phương trình \(x^2+y^3=z^4\) có nghiệm là các số nguyên tố x, y, z được không
Chứng minh rằng phương trình sau không có nghiệm với mọi x, y, z là các số nguyên dương nguyên tố cùng nhau. x4 + y4 = z2
*Bài đăng mang tính chất đố vui
Tìm nghiệm nguyên dương của phương trình: x(x+1)+y(y+1)=z(z+1) với x,y là các số nguyên tố.
1. Tìm a,b ∈ Z+(a,b ≠1) để 2a+3b là số chính phương
2. Tìm nghiệm nguyên không âm của phương trình:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\)
3. Tìm x,y,z ∈ Z+ t/m:
\(xy+y-x!=1;yz+z-y!=1;x^2-2y^2+2x-4y=2\)
4. Tìm tất cả các số nguyên tố p;q;r sao cho:
pq+qp=r
5. Tìm nghiệm nguyên tố của phương trình:
\(x^y+y^x+2022=z\)
6. CMR: Với n ∈ N và n>2 thì 2n-1 và 2n+1 không thể đồng thời là 2 số chính phương
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
Lúc nãy bận thi online nên giờ mới làm tiếp được, bạn thông cảm.
Bài 4:
Do p; q; r là các SNT nên \(p^q+q^p>2^2+2^2=8\Rightarrow r>8\) nên r là SNT lẻ
Mà r lẻ thì trong 2 số \(p^q;q^p\) phải có 1 số lẻ, một số chẵn.
Do vai trò p; q như nhau nên không mất tính tổng quát ta giả sử p lẻ, q chẵn
\(\Rightarrow q=2\). Lúc này ta có:
\(p^2+2^p=r\)
+Xét p=3\(\Rightarrow p^2+2^p=r=17\left(tm\right)\) (Do p lẻ nên loại TH p=2)
+Xét p>3. Ta có:
\(\left\{{}\begin{matrix}p^2\equiv1\left(mod3\right)\\2^p\equiv\left(-1\right)^p\equiv-1\left(mod3\right)\end{matrix}\right.\)
\(\Rightarrow p^2+2^p\equiv1+\left(-1\right)\equiv0\left(mod3\right)\)
\(\Rightarrow\left(p^2+2^p\right)⋮3\) mà \(p^2+2^p>3\) nên là hợp số
\(\Rightarrow r\) là hợp số, không phải SNT, loại.
Vậy ta có \(\left(p;q;r\right)\in\left\{\left(3;2;17\right);\left(2;3;17\right)\right\}\) tm đề bài
Bài 6: Ta có 1SCP lẻ chia cho 4 dư 1.
Nếu 2n-1 là SCP thì ta có
\(2n-1\equiv1\left(mod4\right)\Leftrightarrow2n+1\equiv3\left(mod4\right)\)
Do đó 2n+1 không là SCP
\(\Rightarrowđpcm\)
Tìm các số nguyên tố x, y, z sao cho (x + y)2 - x5 = y3 - z3
Tìm nghiệm nguyên của phương trình x4 - y4 = 3y2 +1
Cho số nguyên a Chứng minh a^2+1 có ước nguyên tố dạng 4k + 3 Từ đó suy ra phương trình sau không có nghiệm nguyên
a, 4xy-x-y=z^2
b, x^3-y^3=7
Cho nguyên tố X thuộc chu kì 3 , nhóm IA , nguyên tố Y số e ở phân lớp P là 2 , Nguyên tố Z thuộc nhóm VIA có tổng số hạt cơ bản (p,e,n) là 24
a. Xác định nguyên tố X Y Z
b. viết phương trình tạo thành Ion từ X,Y,Z
c.Giải thích sự tạo thành liên kết giữa X và Z
a/ntố X ở chu kì 3 \(\Rightarrow\)có 3 lớp e.nhóm IA \(\Rightarrow\)CHe kết thúc ở 3s\(^1\)\(\Rightarrow\)CHe là .\(\Rightarrow\) z=......
ntố Y có số e phân lớp P là 2\(\Rightarrow\) CHe kết thúc ở 2p\(^2\) \(\Rightarrow\) CHe là .....
ntố Z có 2Z+N=24.áp dụng công thức Z\(\le\) N\(\le\) 1,5Z.công vào mỗi vế 2Z đẻ có 2z+n=24\(\Rightarrow\) z=.....(có vài trường hợp bạn tự loại nha)
b/ từ phần a là tự suy ra đc mà!GOOD LUCK!
1) Chứng minh rằng: \(x^3-7y=51\) không có nghiệm nguyên
2) Tìm nghiệm nguyên của phương trình \(x^2-5y^2=27\)
3) Tìm nghiệm nguyên dương
a) \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
b)\(\dfrac{1}{x}+\dfrac{1}{y}=z\)
1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7
Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.
Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.
3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có:
\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)
Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).
Những số nguyên nào là nghiệm của phương trình x^2 + y^2 = z^2? có những nghiệm hiển nhiên, như 3^2 + 4^2 = 5^2.
Các công thức tổng quát cho bộ số (x; y; z) hay còn gọi là bộ Pythagore:
Công thức 1:
x
=
n
,
y
=
1
2
(
n
2
−
1
)
,
z
=
1
2
(
n
2
+
1
)
, với n là số tự nhiên lẻ.
Công thức 2:
x
=
4
n
,
y
=
4
n
2
−
1
,
z
=
4
n
2
+
1
Công thức 3:
x
=
t
(
a
2
−
b
2
)
,
y
=
2
t
a
b
,
z
=
t
(
a
2
+
b
2
)
trong đó, t, a, b là các số nguyên dương bất kì sao cho a > b, a và b không có ước nguyên tố chung và có tính chẵn lẻ khác nhau.
Từ đó, ta có thể giải quyết được bài toán trên.
https://diendantoanhoc.net/topic/62091-x2-y2-z2/
Mở cái này có cách làm đấy
tìm nghiệm nguyên tố của phương trình \(x^y+y^x+\left(x+y+1\right)^3=x^3+y^3+z+1\)
\(\Leftrightarrow x^y+y^x+x^3+y^3+1+3\left(x+y\right)\left(x+1\right)\left(y+1\right)=x^3+y^3+1+z\)
\(\Leftrightarrow x^y+y^x+3\left(x+y\right)\left(y+1\right)\left(x+1\right)=z\)
Do \(VT>3\Rightarrow z>3\Rightarrow z\) lẻ đồng thời z không chia hết cho 3
Nếu \(x;y\) đều lẻ hoặc đều chẵn \(\Rightarrow VT\) chẵn (không thỏa mãn)
\(\Rightarrow\) x và y có đúng 1 số chẵn, do vai trò của x; y như nhau, giả sử y chẵn \(\Rightarrow y=2\)
\(\Rightarrow x^2+2^x+9\left(x+2\right)\left(x+1\right)=z\)
- Nếu \(x>3\Rightarrow x^2\) chia 3 dư 1, đồng thời do x lẻ \(\Rightarrow x=2k+1\)
\(\Rightarrow2^x=2^{2k+1}=2.4^k\) chia 3 dư 2
\(\Rightarrow x^2+2^x\) chia hết cho 3 \(\Rightarrow VT\) chia hết cho 3 (không thỏa mãn)
\(\Rightarrow x\le3\Rightarrow x=3\Rightarrow z=197\) (thỏa mãn)
Vậy \(\left(x;y;z\right)=\left(3;2;197\right)\)