Giaỉ pt:
\(\sqrt[3]{5+x}-x=5\)
Giaỉ hệ PT :\(\hept{\begin{cases}\sqrt{x+2}\left(x-y+3\right)=\sqrt{y}\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\end{cases}}\)
Giaỉ giúp mình nha
Điều kiện x>=-2; y>=0; x>=y-3
Ta xét PT thứ nhất
Đặt √(x+2) = a; √y = b (a,b>=0)
Thì PT thành a(a2 - b2 + 1) - b = 0
<=> a3 - ab2 + a - b = 0
<=> a(a - b)(a + b) + (a -b) =0
<=> (a - b)(a2 + ab + 1)=0
Đễ thấy a2 + ab + 1 >0
Nên a =b
Thế vào ta được y = x + 2
Thay cái này vào PT còn lại là xong
\(\hept{\begin{cases}\sqrt{x+2}\left(x-y+3\right)=\sqrt{y}\left(1\right)\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\left(2\right)\end{cases}}\)
DKXD :x>=-2; y>=0
Đặt\(\hept{\begin{cases}\sqrt{x+2=a}\\x-y+3=b\end{cases}\left(a\ge0\right)}\)
Pt 1 có dạng \(ab=\sqrt{a^2-b+1}\Leftrightarrow a^2b^2=a^2-b+1\Leftrightarrow a^2\left(b-1\right)\left(b+1\right)+b-1=0\)
\(\Leftrightarrow\left(b-1\right)\left(a^2b+a^2+1\right)=0\)
+> b-1=0\(\Rightarrow b=1\Leftrightarrow x-y+3=1\)
\(\)Khi đó pt (2) \(\Leftrightarrow x^2+\left(x+3\right)\left(x+2+1\right)=x+16\Leftrightarrow x^2+\left(x+3\right)^2=x+16\)
\(\Leftrightarrow x^2+x^2+6x+9=x+16\Leftrightarrow2x^2+5x-7=0\)
Có : 2+5-7=0
Nên pt trên có 2 no \(x_1=1\left(tm\right);x_2=-\frac{7}{2}\left(ktm\right)\)
\(\Rightarrow1-y+3=1\Leftrightarrow y=3\left(tm\right)\)
+>\(a^2b+a^2+1=0\Leftrightarrow\left(x+2\right)\left(x+3-y\right)+x+3=0\)(3)
Đặt \(x+3=m\). Pt(3) có dạng \(\left(m-1\right)\left(m-y\right)+m=0\Leftrightarrow m^2-m-my+y+m=0\Leftrightarrow m^2=y\left(m-1\right)\)
Nếu \(m-1=0\Leftrightarrow x+3-1=0\Leftrightarrow x=-2\left(tm\right)\Rightarrow y=0\left(tm\right)\)
Nhưng k tm pt 2
\(\Rightarrow m-1\ne0\Rightarrow y=\frac{m^2}{m-1}=\frac{\left(x+3\right)^2}{x+2}\)
Thay vào pt (2) ta được \(x^2+\left(x+3\right)\left(2x+5-\frac{\left(x+3\right)^2}{x+2}\right)=x+16\)
ĐẾn đây tự nhân chéo chuển vế ta được \(2x^3+7x^2-8x-29=0\)
Cảm ơn bạn nhưng mình lỡ k cho bb kia rồi
Xin lỗi nhìu nha
Giaỉ pt : \(x+\sqrt{5+\sqrt{x-1}}=6\)
Đặt t=\(\sqrt{x-1}+5=t\)
=> t ( t -9) +19 =0
=> t =?
Không ở nhà không có máy tính
Lầ trước làm ẩu quá
\(\left(x+1\right)\sqrt{3x+1}-5\sqrt{2x-1}+\sqrt{6x^2-x-1}=5x+5\)
Giaỉ pt. Nhanh giúp mình
\(\Leftrightarrow\left(x+1\right)\sqrt{3x+1}-5\sqrt{2x-1}+\sqrt{2x-1}\cdot\sqrt{3x+1}-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\sqrt{3x+1}-5\right)+\sqrt{2x-1}\cdot\left(\sqrt{3x+1}-5\right)=0\)
\(\Leftrightarrow\left(x+1+\sqrt{2x-1}\right)\left(\sqrt{3x+1}-5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1+\sqrt{2x-1}\right)=0\\\sqrt{3x+1}-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}vônghiệm\\x=8\end{cases}}\)
Đk : \(x\ge\frac{1}{2}\)
Đặt \(\sqrt{2x-1}=a;\sqrt{3x+1}=b\)\(a\ge0;b>0\) thì x+1 = b2-a2-1
PT<=> (b^2-a^2-1)b -5a + ab = 5(b^2-a^2-1)
<=> (b^2-a^2-1)(b-5)+a(b-5)=0
<=> (b^2-a^2-1+a)(b-5)=0
<=>\(\orbr{\begin{cases}b^2-a^2-1+a=0\\b-5=0\end{cases}}\)
* b^2-a^2-1+a= 0 <=>x+2 -1 + \(\sqrt{2x-1}\)=0<=> x+1+\(\sqrt{2x-1}\)=0
Mặt khác : x\(\ge\)1/2 >0 ; \(\sqrt{2x-1}\ge0\) nên x+1+\(\sqrt{2x-1}>0\)=> pt vô no
*b-5 = 0 <=> b=5 <=> x= 8 tm
Vậy pt có no duy nhất là x=8
Giaỉ PT: \(\sqrt{x-3}-\sqrt{x}=\sqrt{2x+1}-\sqrt{3x+4}\)
Giaỉ pt
\(\sqrt{2x+3}-\sqrt{x^2+4}=0\)
\(\Leftrightarrow x^2+4=2x+3\)
=>x^2-2x+1=0
=>(x-1)^2=0
=>x=1
\(\sqrt{4x-8}=6-\sqrt{x-2}\)
Giaỉ pt này ạ
ĐKXĐ: x >= 2
Pt <=> 3sqrt(x - 2) = 6
<=> sqrt(x - 2) = 2
<=> x - 2 = 4
<=> x = 6 (thỏa ĐKXĐ)
Giaỉ PT
\(\frac{5}{x-8}+1=\frac{23}{x^2-5x-24}-\frac{2}{x+3}\)
Giaỉ hệ phương trình: \(\dfrac{2}{x-y}+\sqrt{y+1}=4\)
\(\dfrac{1}{x-y}-3\sqrt{y+1}=-5\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{x-y}+3\sqrt{y+1}=12\\\dfrac{1}{x-y}-3\sqrt{y+1}=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\3\sqrt{y+1}=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y+1=4\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(4;3\right)\)
Giaỉ pt
\(\sqrt{x+2}-2x=3\)
\(\sqrt{4-x^2}=2x-4\)
a) Điều kiện xác định \(x\ge-2\)
Ta có \(\sqrt{x+2}-2x=3\)
\(\Leftrightarrow\sqrt{x+2}=3+2x\)\(\left(x\ge-\frac{3}{2}\right)\)
\(\Leftrightarrow\left(\sqrt{x+2}\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow x+2=4x^2+12x+9\)
\(\Leftrightarrow4x^2+11x+7=0\)
\(\Leftrightarrow4x^2+4x+7x+7=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\frac{7}{4}\end{cases}}\)\(\Rightarrow x=-1\)( vì \(x\ge-\frac{3}{2}\)nên \(x\ne-\frac{7}{4}\))
b) Điều kiện xác định: \(4-x^2\ge0\Rightarrow-2\le x\le2\)
\(2x-4\ge0\Rightarrow x\ge2\)
\(x\le2,x\ge2\)
nên xảy ra khi x=2
\(ĐKXĐ:x\ge-2\)
\(\sqrt{x+2}-2x=3\)
\(\Leftrightarrow x+2=\left(3+2x\right)^2\)
\(\Leftrightarrow x+2=9+12x+4x^2\)
\(\Leftrightarrow4x^2+11x+7=0\)
\(\Delta=11^2-4.7.4=9\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=-1\left(TM\right)\\x_2=-\frac{7}{4}\left(TM\right)\end{cases}}\)
Vậy.........
hok tốt