cmr:
\(a=n^3\left(n^2-7\right)^2-36n⋮7\forall n\)
cmr:\(n^3\left(n^2-7\right)^2-36n⋮210\forall n\in N\)
Vì đây là 7 số liên tiếp
nên A chia hết cho 7!
=>A chia hết cho 210
Chứng minh rằng: \(A=\left[n^3\left(n^2-7\right)^2-36n\right]⋮7\) với \(\forall n\inℤ\)
là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7
CMR: A= [ n3( n2 -7)2 -36n ] ⋮ 7 ∀ n∈ Z
Vì đây là 7 số nguyên liên tiếp
nên A chia hết cho 7
CMR :
\(A=\left[n^3\left(n^2-7\right)^2-36n\right]⋮7\) với mọi n thuộc Z
Vì đây là 7 số nguyên liên tiếp
nên A chia hết cho 7
cmr: a=\(n^3\left(n^2-7\right)^2-36n⋮7\) với mọi n
\(=n\left(n^3-7n-36\right)\)
\(=n\left(n^3-4n^2+4n^2-16n+9n-36\right)\)
\(=n\left(n-4\right)\left(n^2+4n+9\right)\)
TH1: n=7k
\(A=7k\left(7k-4\right)\cdot B⋮7\)
TH2: n=7k+1
\(A=\left(7k+1\right)\left(7k-3\right)\left(49k^2-14k+1+28k+4+9\right)\)
\(=\left(7k+1\right)\left(7k-3\right)\left(49k^2+14k+14\right)⋮7\)
TH3: n=7k+2
\(A=\left(7k+2\right)\left(7k-2\right)\left(49k^2+28k+4+28k+8+9\right)\)
\(=C\cdot\left(49k^2+56k+14\right)⋮7\)
Nếu n=10 thì A ko chia hết cho 7 nha bạn
chứng minh:\(n^3\left(n^3-7\right)-36n⋮210\forall n\in N\)
Vì đây là 7 số nguyên liên tiếp
nên A chia hết cho 7!
=>A chia hết cho 5040
=>A chia hết cho 210
chứng minh
\(n^3\left(n^3-7\right)-36n⋮210\forall n\in N\)
CMR: với mọi số nguyên n thì số: A=\(n^3\left(n^2-7\right)^2-36n\) chia hết cho 105
Dễ dàng phân tích được
\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\Rightarrow\left\{{}\begin{matrix}A⋮3\\A⋮5\\A⋮7\end{matrix}\right.\)
Do \(\left(3;5;7\right)=1\Rightarrow A⋮105\)
CMR : A = \(n^3.\left(n^2-7\right)^2-36n\) chia hết cho 7 với n \(\in\) Z
\(A=n^7-14n^5+49n^3-36n=\left(n^3+1\right)\left(n^3-1\right).n+7\left(-2n^5+7n^3-5n\right)\)
Xét các số dư của n khi chia cho 7.
Xét mod 7:
+n ≡ 0 => n⋮ 7 => n(n3+1)(n3-1)⋮7 => A⋮7
+n ≡ 1; 2; 4; => n3 ≡ 1 => n3-1 ≡ 0 => n3-1⋮7 => n(n3+1)(n3-1)⋮7 => A⋮7
+n ≡ 3; 5; 6 => n3 ≡ 6 => n3 + 1 ≡ 0 => n3 + 1 ⋮7 => n(n3+1)(n3-1)⋮7 => A⋮7
Vậy A luôn chia hết cho 7.