Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Thu Hà
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Akai Haruma
19 tháng 10 2018 lúc 22:53

Lời giải:

\(A=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{2011}{1.2.3...2012}\)

\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{2012-1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...2011}-\frac{1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2...2012}< 1\)

Ta có đpcm.

Ngọc Hiền
19 tháng 10 2018 lúc 19:19

?

Nguyen Minh Trang
Xem chi tiết
Khuất Châu Giang
5 tháng 3 2015 lúc 12:02

tính tổng dãy số thì dễ nhưng hãy viết rõ ràng hơn

Nguyễn Phùng Mai Khanh
Xem chi tiết
Tớ Thích Cậu
Xem chi tiết
Trần Quốc Việt
5 tháng 5 2018 lúc 16:10

\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}\)

Có: \(\frac{1}{1.2.3.4}< \frac{1}{3.4}\)

\(\frac{1}{1.2.3.4.5}< \frac{1}{4.5}\)

..................................

\(\frac{1}{1.2.3.4.....1000}< \frac{1}{999.1000}\)

=>\(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{999.1000}\)

=> \(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{999}-\frac{1}{1000}\)

=> \(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3}-\frac{1}{1000}\)

=> \(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{2}+\frac{1}{1.2.3}+\frac{1}{3}-\frac{1}{1000}\)

=> \(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< \frac{999}{1000}< \frac{1000}{1000}\)

=>\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< 1\)

Hải Đăng
Xem chi tiết
Nguyễn Ngọc Khánh Huyền
29 tháng 10 2021 lúc 9:36

B chăng:D

Nguyễn Khánh Sơn
Xem chi tiết
Tran Anh Toan
Xem chi tiết
Le Thi Khanh Huyen
6 tháng 3 2015 lúc 17:31

Ta có:

\(A=1+1.2+1.2.3+...+1.2.3.....n\)

     \(=1!+2!+3!+4!+...+n!\)

Ta thấy bắt đầu từ 5! trở lên luôn có tận cùng là 0 vì nó chứa 2 thừa số 5 và 2.

Ta lại có:

\(A=1+2+6+24+\left(..0\right)+...+\left(...0\right)\)

     \(=33+\left(...0\right)\)

     \(=\left(...3\right)\)

Mà số chính phương có tận cùng là 0;1;5;6;9 nên A không là số chính phương.