tìm nhiệm nguyên của phương trình:
\(1!+2!+...+x!=y^2\)
tìm nhiệm nguyên của phương trinh : \(x^4+x^2+1=y^2\)
Đặt \(x^2=a\ge0\).
PT đã cho trở thành: \(a^2+a+1=y^2\).
Ta có: \(a^2< a^2+a+1\le a^2+2a+1=\left(a+1\right)^2\).
Mà \(a^2+a+1=y^2\) là số chính phương nên theo nguyên lí kẹp ta có \(a^2+a+1=\left(a+1\right)^2\Leftrightarrow a=0\Rightarrow x=0;y=1\).
Tìm nhiệm nguyên dương của phương trình : 5x + 2*5y + 5z = 4500 với x<y<z
1. Tìm nghiệm nguyên của phương trình : x^2 + ( x+ 1)^2 = y^4 + (y+1)^4
2.tìm ngiệm nguyên của phương trình : x^2 - 3y^2 =17
Cho hệ phương trình mx+2y=m+2 (2m-1)x+(m + 1)y = 2(m + 1)a) Giải hệ phương trình với m = 3 ? b) Tìm giá trị của m để hệ phương trình có nghiệm duy nhất , vô số nhiệm
a: \(\left\{{}\begin{matrix}mx+2y=m+2\\\left(2m-1\right)x+\left(m+1\right)y=2\left(m+1\right)\end{matrix}\right.\)
Khi m=3 thì hệ sẽ là:
3x+2y=5 và 5x+4y=8
=>x=2 và y=-1/2
b: Hệ có nghiệm duy nhất thì \(\dfrac{m}{2m-1}< >\dfrac{2}{m+1}\)
=>m^2+m<>4m-2
=>m^2-3m+2<>0
=>m<>1 và m<>2
hệ có vô số nghiệm thì \(\dfrac{m}{2m-1}=\dfrac{2}{m+1}=\dfrac{2}{2\left(m+1\right)}=\dfrac{1}{m+1}\)
=>m/2m-1=2/m+1 và 2/m+1=1/m+1(vô lý)
=>Ko có m thỏa mãn
Để hệ vô nghiệm thì m/2m-1=2/m+1<>1/m+1
=>m=2 hoặc m=1
1. tìm nghiệm nguyên của phương trình:
p(x + y) = xy và p nguyên tố
2. tìm nghiệm nguyên của phương trình:
a. x + y + z + 9 = xyz
b. x + y + 1 = xyz
1)Tìm nghiệm nguyên của phương trình:
y3-x3=91
2)Tìm nghiệm nguyên của phương trình:
x2=y2+y+13
3)Tìm nghiệm nguyên của phương trình:
x2+x+1991=y2
a) Tìm nghiệm nguyên của phương trình: \(2y^2-x+2xy=y+4\)
b) Giải phương trình : ( \(1+x\sqrt{x^2+1}\))(\(\sqrt{x^2+1}-x\)) = 1
\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)
\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)
\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)
\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)
\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)
\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)
Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ
\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)
Tìm nghiệm nguyên của phương trình: (x+y+1)^2=3(x^2+y^2+1)
Tìm nhiệm duy nhất của hệ phương trình
\(\hept{\begin{cases}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{cases}}\)
\(\hept{\begin{cases}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{cases}}\)
Đặt \(\sqrt{x-1}=a\left(a\ge0\right)\)
\(\sqrt{y+2}=b\left(b\ge0\right)\)
Khi đó hpt có dạng:
\(\hept{\begin{cases}a-3b=2\\2a+5b=15\end{cases}\Rightarrow\hept{\begin{cases}2a-6b=4\\2a+5b=15\end{cases}}\Rightarrow\hept{\begin{cases}-11b=-11\\2a+5b=15\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\2a+5.1=15\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\a=5\end{cases}\left(TM\right)}}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}=5\\\sqrt{y+2}=1\end{cases}\Rightarrow\hept{\begin{cases}x-1=25\\y+2=1\end{cases}\Rightarrow}\hept{\begin{cases}x=26\\y=-1\end{cases}}}\)
Cho phương trình: \(x^2-3y^2+2xy-2x-10y+4\)
a) Tìm nghiệm \(\left(x;y\right)\) của phương trình thỏa mãn: \(x^2+y^2=10\)
b) Tìm nghiệm nguyên của phương trình đã cho