Với a,b ≥ 0
CM : a + b ≥ 2√ab
trên tia Ax lâý 2 điểm B và C tính khoảng cách AC biết
a) AB=7cm BC=2cm
b) AB=a(cm) BC=b(cm) . (0<a<b)
giúp mình với
a. Vì 2 điểm B và C thuộc tia Ax(gt)
Suy ra: AC= AB + BC
Thay số: AC = 7+2=9
Vậy AC =9 cm
b. Làm tương tự chỉ cần thay AB=a BC=b thôi
Có kết luận gì về các cặp đoạn thẳng sau:
a) AB=5 (cm), CD=4 (cm).
b) MN=3 (cm), PQ=3 (cm).
c) EF=a (cm), GH= b (cm); với a>0, b>0.
Với a , b>0 .CM
1) a/3b + b(a+b)/a2 +ab +b2 lớn hơn bằng 1
Cho `a,b,c>=0`
`a)CM:(a(b+c))/(a^2+bc)+(b(c+a))/(b^2+ca)+(c(a+b))/(c^2+ab)>=2`
Chứng minh giúp mình BĐT cổ xưa này với!!
CMR với mọi a,b,c thực thì
A) a^2+b^2+c^2+ab+Bc+ca lớn hơn hoặc bằng 0
B)a^2+b^2+c^2-ab-bc-ca lớn hơn hoặc băng 0
Cm hộ e ạ nếu CM đẳng thức thì giải thích đẳng thức cho e dc k ạ
A) a2+b2+c2+ab+bc+ca>=0 (*)
<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0
<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0
<=> (a+b)2+(b+c)2+(c+a)2>=0
BĐT cuối luôn đúng với mọi a,b,c
Vậy BĐT (*) đc cm
Phần B cũng tương tự nhé
a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2
Mà \(\left(a+b+c\right)^2\ge0\forall x\)
Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)
b) hình như sai đề rồi bạn à !
Với a,b ≥ 0
CM : a + b ≥ 2\(\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}>=0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)
với a b c >0 cm a/bc+b/ca+c/ab>=2(1/a+1/b+1/c)
đề bỏ số 2 nha bạn
Áp dụng BĐT Cauchy - Schwarz, ta có :
\(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=\frac{2}{c}\)
Tương tự , \(\frac{b}{ac}+\frac{c}{ab}\ge\frac{2}{a}\); \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\)
Cộng từng vế BĐT, ta được :
\(2.\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
Cho a>=0,b>=0,c>=0 cm
a,(a+b)/2>=√(ab)
b, a+b+c>= √(ab)+√(bc)+√(ca)
c, a+b+1/2>=√a+√b
a)\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a+b-2\sqrt{ab}\ge0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x
->Đpcm
2 phần kia mai tui lm nốt cho h đi ngủ
CM \(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}.\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0; b > 0)
Cho (a+b+c)2=3.(ab+bc+ac) với a, b, c khác 0
Cm (a+b)(b+c)(c+a)/abc=8
\(pt\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)