TÌM GIÁ TRỊ LỚN NHẤT \(A=\dfrac{\sqrt{X}-1}{\sqrt{X}-4}\)
cho biểu thức: P = \(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
a, Rút gọn P
b, Tìm giá trị của P khi x = 7 - \(4\sqrt{3}\)
c, Tìm x để P có giá trị lớn nhất
Tìm giá trị nguyên của x để biểu thức P=\(\dfrac{4+\sqrt{x}}{1+\sqrt{x}}\) có giá trị lớn nhất
\(P=\dfrac{\sqrt{x}+1+3}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)
P lớn nhất khi căn x+1=1
=>x=0
Tìm giá trị nhỏ nhất, giá trị lớn nhất của P = \(\dfrac{\sqrt{x}}{x+3\sqrt{x}+4}\)
Đk: \(x\ge0\)
\(P=\dfrac{\sqrt{x}}{x+3\sqrt{x}+4}\)
\(\Leftrightarrow x.P+\sqrt{x}\left(3P-1\right)+4P=0\) (1)
Xét P=0 <=> x=0(tm)
Xét \(P\ne0\) .Coi pt (1) là phương trình ẩn \(\sqrt{x}\)
Phương trình (1) có nghiệm không âm khi \(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\S\ge0\\P\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-7P^2-6P+1\ge0\\\dfrac{1-3P}{P}\ge0\\4\ge0\left(lđ\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le P\le\dfrac{1}{7}\\0< P\le\dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow0< P\le\dfrac{1}{7}\)
Kết hợp với P=0 \(\Rightarrow0\le P\le\dfrac{1}{7}\)
Có \(\dfrac{1}{7}>0\) => maxP=\(\dfrac{1}{7}\). Thay \(P=\dfrac{1}{7}\) vào (1) tìm được x=4 (tm)
minP=0 <=> x=0
tìm giá trị lớn nhất A =\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
Biểu thức đã cho không tồn tại giá trị lớn nhất cũng không tồn tại giá trị nhỏ nhất
Tìm giá trị lớn nhất của A= \(\dfrac{\sqrt{z-1}}{z}+\dfrac{\sqrt{x-2}}{x}+\dfrac{\sqrt{y-3}}{y}\)
đkxđ: \(z\ge1;x\ge2;y\ge3\)
Đặt \(a=\sqrt{z-1}\ge0;b=\sqrt{x-2}\ge0;c=\sqrt{y-3}\ge0\)
\(\Rightarrow z=a^2+1;x=b^2+2;y=c^2+3\)
\(\Rightarrow A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+2}+\dfrac{c}{c^2+3}\)
Do các biến \(a,b,c\) độc lập nhau nên ta xét từng phân thức một.
Đặt \(f\left(a\right)=\dfrac{a}{a^2+1}\) \(\Rightarrow f\left(a\right).a^2-a+f\left(a\right)=0\) (*)
Nếu \(f\left(a\right)=0\) thì \(a=0\), rõ ràng đây không phải là GTLN cần tìm.
Xét \(f\left(a\right)\ne0\)
Để pt (*) có nghiệm thì \(\Delta=\left(-1\right)^2-4\left[f\left(a\right)\right]^2\ge0\)
\(\Leftrightarrow\left(1+2f\left(a\right)\right)\left(1-2f\left(a\right)\right)\ge0\)
\(\Leftrightarrow-\dfrac{1}{2}\le f\left(a\right)\le\dfrac{1}{2}\)
\(f\left(a\right)=\dfrac{1}{2}\Leftrightarrow\dfrac{a}{a^2+1}=\dfrac{1}{2}\Leftrightarrow a^2+1=2a\Leftrightarrow a=1\) (nhận)
Vậy \(max_{f\left(a\right)}=\dfrac{1}{2}\).
Tiếp đến, gọi \(g\left(b\right)=\dfrac{b}{b^2+2}\) \(\Rightarrow g\left(b\right).b^2-b+2g\left(b\right)=0\) (**)
Tương tự nếu \(b=0\) thì vô lí. Xét \(b\ne0\). Khi đó để (**) có nghiệm thì \(\Delta=\left(-1\right)^2-8\left[g\left(b\right)\right]^2\ge0\)
\(\Leftrightarrow\left(1-2\sqrt{2}g\left(b\right)\right)\left(1+2\sqrt{2}g\left(b\right)\right)\ge0\)
\(\Leftrightarrow-\dfrac{1}{2\sqrt{2}}\le g\left(b\right)\le\dfrac{1}{2\sqrt{2}}\)
\(g\left(b\right)=\dfrac{1}{2\sqrt{2}}\Leftrightarrow\dfrac{b}{b^2+2}=\dfrac{1}{2\sqrt{2}}\Leftrightarrow b^2+2=2\sqrt{2}b\Leftrightarrow b=\sqrt{2}\) (nhận)
Vậy \(max_{g\left(b\right)}=\dfrac{1}{2\sqrt{2}}\)
Làm tương tự với \(h\left(c\right)=\dfrac{c}{c^2+3}\), ta được \(max_{h\left(c\right)}=\dfrac{1}{2\sqrt{3}}\), xảy ra khi \(c=\sqrt{3}\)
Vậy GTLN của A là \(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{6+3\sqrt{2}+2\sqrt{3}}{12}\), xảy ra khi \(\left(a,b,c\right)=\left(1,\sqrt{2},\sqrt{3}\right)\) hay \(\left(x,y,z\right)=\left(2,4,6\right)\).
A=\(\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) ,B=\(\dfrac{2\sqrt[]{x}+1}{\sqrt{x}+3}\)
với x\(\ge\)0,x\(\ne\)9
a)rút gọn A
b)tìm giá trị lớn nhất của A
c)với các biểu hức A,B nói trên,hãy tìm các giá trị nguyên của x để A:(B-1)là số nguyên
a: \(A=\dfrac{2\sqrt{x}+6+\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{3}{\sqrt{x}+3}\)
b: \(\sqrt{x}+3>=3\)
=>A<=1
Dấu = xảy ra khi x=0
c: \(P=A:\left(B-1\right)=\dfrac{3}{\sqrt{x}+3}:\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{3}{\sqrt{x}-2}\)
Để P nguyên thì căn x-2\(\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{1;25\right\}\)
Tìm giá trị lớn nhất của
N=\(\dfrac{2x+5}{\sqrt{x}+1}\) khi x≥9
F=\(\dfrac{x+3}{\sqrt{x}+1}\) khi x≥4
Hai biểu thức này chỉ có min thui bạn nhé.
1.
\(N=\frac{2x+5}{\sqrt{x}+1}=\frac{2\sqrt{x}(\sqrt{x}+1)-2(\sqrt{x}+1)+7}{\sqrt{x}+1}=2\sqrt{x}-2+\frac{7}{\sqrt{x}+1}\)
\(=2(\sqrt{x}+1)+\frac{7}{\sqrt{x}+1}-4\)
\(=\frac{7}{16}(\sqrt{x}+1)+\frac{7}{\sqrt{x}+1}+\frac{25}{16}(\sqrt{x}+1)-4\)
\(\geq 2\sqrt{\frac{7}{16}.7}+\frac{25}{16}(\sqrt{9}+1)-4=\frac{23}{4}\) (theo BĐT AM-GM)
Vậy $N_{\min}=\frac{23}{4}$ khi $x=9$
2.
\(F=\frac{x+3}{\sqrt{x}+1}=\frac{\sqrt{x}(\sqrt{x}+1)-(\sqrt{x}+1)+4}{\sqrt{x}+1}=\sqrt{x}-1+\frac{4}{\sqrt{x}+1}\)
\(=\frac{4}{9}(\sqrt{x}+1)+\frac{4}{\sqrt{x}+1}+\frac{5\sqrt{x}}{9}-\frac{13}{9}\)
\(\geq 2\sqrt{\frac{4}{9}.4}+\frac{5\sqrt{4}}{9}-\frac{13}{9}=\frac{7}{3}\)
Vậy $F_{\min}=\frac{7}{3}$ khi $x=4$
Câu 1: Rút gọn
\(\dfrac{2}{\sqrt{5}-\sqrt{3}}+\dfrac{3}{\sqrt{6}+\sqrt{3}}\)
Câu 2:
Cho A= \(\dfrac{1}{x-2\sqrt{x-5}+3}\). Tìm giá trị lớn nhất của A, giá trị đó đạt được khi x bằng bao nhiêu?
1 quy đồng lên ra được
2 \(A=\dfrac{1}{x-2\sqrt{x-5}+3}\le\dfrac{1}{5-2.0+3}=\dfrac{1}{8}\)
dấu"=" xảy ra<=>x=5
tìm giá trị lớn nhất của M=\(\dfrac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
\(\Rightarrow M=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-4}}{y}=\dfrac{\sqrt{\left(x-1\right)\cdot1}}{x}+\dfrac{4\sqrt{y-4}}{4y}\le\dfrac{x-1+1}{2x}+\dfrac{y-4+4}{4y}=\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{3}{4}\) Dấu = xảy ra \(\Leftrightarrow x=2;y=8\)
Cho A=\(\dfrac{2\sqrt{x}-4}{\sqrt{x}+1}\)
a, \(x\in N\) ? để A < 0
b, CMR A < 2
c, x ? để A < 1
d, x ? để A > -1
e, x ? để \(A\le\dfrac{-x+6\sqrt{x}-8}{\sqrt{x}+1}\)
f, Giá trị nhỏ nhất của A ?
g, \(B=A+\dfrac{9}{\sqrt{x}+1}\), Giá trị lớn nhất cuẩ B ?
h, \(x\notin N\) ? để \(A\in Z\)
a: Để A<0 thì 2*căn x-4<0
=>căn x<2
=>0<=x<4
=>\(x\in\left\{0;1;2;3\right\}\)
b: \(A-2=\dfrac{2\sqrt{x}-4-2\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{-6}{\sqrt{x}+1}< 0\)
=>A<2
c: A<1
=>A-1<0
=>\(\dfrac{2\sqrt{x}-4-\sqrt{x}-1}{\sqrt{x}+1}< 0\)
=>căn x-5<0
=>0<=x<25
d: A>-1
=>A+1>0
=>\(\dfrac{2\sqrt{x}-4+\sqrt{x}+1}{\sqrt{x}+1}>0\)
=>3*căn x-3>0
=>x>1
e: A<=(-x+6căn x-8)/(căn x+1)
=>2*căn x-4<=-x+6căn x-8
=>x-4căn x+4<=0
=>x=4