Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Châu Thái lam
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 6 2020 lúc 20:55

\(\Leftrightarrow a^2-2ab+b^2+a^2-2ac+c^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2\ge0\) (luôn đúng)

Vậy BĐT ban đầu được chứng minh

Dấu "=" xảy ra khi \(a=b=c\)

Linh Châu
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 6 2020 lúc 17:58

a/ BĐT sai, với \(c=0\Rightarrow\frac{a}{b}< \frac{a}{b}\) (vô lý)

b/ \(\Leftrightarrow\frac{a^2}{4}+b^2+c^2-ab+ac-2bc\ge0\)

\(\Leftrightarrow\left(\frac{a}{2}-b+c\right)^2\ge0\) (luôn đúng)

c/ Bạn coi lại đề, trong ngoặc bên phải là \(a^2b\) hay \(ab^2\)?

d/ \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}\ge0\)

\(\Leftrightarrow a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ca}+a\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

e/ Thiếu điều kiện, BĐT này chỉ đúng khi \(a+b\ge0\) (hoặc a;b không âm)

Phương Hà
Xem chi tiết
Hồ Thị Hồng Nghi
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 7:47

Áp dụng BĐT cosi:

\(\left(2+a+b\right)\left(a+4b+ab\right)\ge3\sqrt[3]{2ab}\cdot3\sqrt[3]{4a^2b^2}=9\sqrt[3]{8a^3b^3}=9\cdot2ab=18ab\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=b=2\\a=4b=ab\end{matrix}\right.\left(\text{vô lí}\right)\)

Vậy dấu \("="\) ko xảy ra hay \(\left(2+a+b\right)\left(a+4b+ab\right)>18ab\)

Mashiro Rima
Xem chi tiết
Nguyễn Hồng Pha
Xem chi tiết
Akai Haruma
23 tháng 3 2017 lúc 2:35

Lời giải:

BĐT tương đương với \((a^2+ab+ac)(a^2+ac+ab+bc)+b^2c^2\geq 0\)

Đặt \(a^2+ab+ac=t\)

BĐT cần chứng minh \(\Leftrightarrow t(t+bc)+b^2c^2=(t-\frac{bc}{2})^2+\frac{3b^2c^2}{4}\geq 0\)

Luôn đúng vì bình phương của một số thực luôn là số không âm

Dấu bằng xảy ra khi \(2(a^2+ab+ac)=bc\)\(bc=0\)

Mộc Miên
Xem chi tiết
Aura Phạm
Xem chi tiết
Đinh Đức Hùng
5 tháng 2 2018 lúc 17:42

a) Áp dụng bất đẳng thức AM-GM : 

\(\left(a^2+b^2\right)\left(a^2+1\right)\ge2\sqrt{a^2b^2}.2\sqrt{a^2}\ge2ab.2a=4a^2b\)

b) Áp dụng bất đẳng thức :\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x;y>0\)

 \(\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{a+3b+b+2c+a}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

Tương tự \(\hept{\begin{cases}\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{2}{b+2c+a}\\\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{b+2a+c}\end{cases}}\)

Cộng vế với vế ta được : \(VT+VP\ge2VP\Rightarrow VT\ge VP\)(đpcm)

Trần Phúc Khang
Xem chi tiết
tth_new
26 tháng 8 2019 lúc 6:52

n là tham số hay sao ah? 

Trần Phúc Khang
26 tháng 8 2019 lúc 13:46

Anh quên mất  \(n\ge0\)

tth_new
26 tháng 8 2019 lúc 19:56

Với n = 1 đó là một kết quả rất quen thuộc:))  thôi em vào bài luôn, ko thì bị nhiều bạn bảo "nói linh tinh":v Em thử, ko chắc đâu nha, a thử check xem.

Theo nguyên lí Dirichlet, tồn tại ít nhất 2 trong 3 số a - n; b - n; c - n đồng dấu. Giả sử 2 số đó là a -n và b - n.

Thế thì \(\left(a-n\right)\left(b-n\right)\ge0\Rightarrow2abc\ge2acn+2bcn-2cn^2\)

Suy ra  \(LHS\ge n\left(a^2+b^2+c^2\right)+\left(2acn+2bcn-2cn^2\right)+n^3\)

\(=n\left(a^2+b^2\right)+nc^2+n^3-2cn^2+2n\left(ac+bc\right)\)

\(\ge2n\left(ab+bc+ca\right)+nc^2+n^3-2cn^2\)

\(=2n\left(ab+bc+ca\right)+n\left(c^2+n^2-2cn\right)\)

\(=2n\left(ab+bc+ca\right)+n\left(c-n\right)^2\ge2n\left(ab+bc+ca\right)=RHS\)

Vậy ta có đpcm.

Đẳng thức xảy ra khi \(a=b=c=n\)