Chứng minh các bất đẳng thức sau :
a) \(2a^2+b^2+c^2\ge2a\left(b+c\right)\).
b) \(a^4-a^3b-ab^3+b^4\ge0\)
chứng minh với mọi a,b,c ta có bất đẳng thức
\(2a^2+b^2+c^2\ge2a\left(b+c\right)\)
\(\Leftrightarrow a^2-2ab+b^2+a^2-2ac+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2\ge0\) (luôn đúng)
Vậy BĐT ban đầu được chứng minh
Dấu "=" xảy ra khi \(a=b=c\)
CHo a b c d là các số thực . CHứng minh các bất đẳng thức sau :
a, NẾu \(\frac{a}{b}\) <1 thì \(\frac{a}{b}\) < \(\frac{a+c}{b+c}\)
b, \(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\)
c, \(a^4+b^4+c^2+1\ge2a\left(a^2b-a+c+1\right)\)
d, a + b + c \(\ge\sqrt{ab}+\sqrt{bc}\sqrt{ca}\) với a, b, c\(\ge0\)
e, \(a^3+b^3\ge a^2b+b^2a=ab\left(a+b\right)\)
Giúp em với ạ ! ^_^
a/ BĐT sai, với \(c=0\Rightarrow\frac{a}{b}< \frac{a}{b}\) (vô lý)
b/ \(\Leftrightarrow\frac{a^2}{4}+b^2+c^2-ab+ac-2bc\ge0\)
\(\Leftrightarrow\left(\frac{a}{2}-b+c\right)^2\ge0\) (luôn đúng)
c/ Bạn coi lại đề, trong ngoặc bên phải là \(a^2b\) hay \(ab^2\)?
d/ \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}\ge0\)
\(\Leftrightarrow a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ca}+a\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)
e/ Thiếu điều kiện, BĐT này chỉ đúng khi \(a+b\ge0\) (hoặc a;b không âm)
Chứng minh các bất đẳng thức sau:
a) \(a^4+b^4+2a^2b^2\ge2\left(a^3b+ab^3\right)\)với mọi a,b
b) \(x^4+2\ge x^2+2x\)
Chứng minh bất đẳng thức sau:
\(\left(2+a+b\right)\left(a+4b+ab\right)\ge18ab\) \(\left(a,b\ge0\right)\)
Áp dụng BĐT cosi:
\(\left(2+a+b\right)\left(a+4b+ab\right)\ge3\sqrt[3]{2ab}\cdot3\sqrt[3]{4a^2b^2}=9\sqrt[3]{8a^3b^3}=9\cdot2ab=18ab\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=b=2\\a=4b=ab\end{matrix}\right.\left(\text{vô lí}\right)\)
Vậy dấu \("="\) ko xảy ra hay \(\left(2+a+b\right)\left(a+4b+ab\right)>18ab\)
Chứng minh bất đẳng thức
\(a\left(a+b\right)\left(a+b+c\right)+b^2c^2\ge0\)
\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)
\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^{\text{4}}\right)\)
chứng minh bất đẳng thức: \(a\left(a+b\right)\left(a+c\right)\left(a+b+c\right)+b^2c^2\ge0\)
Lời giải:
BĐT tương đương với \((a^2+ab+ac)(a^2+ac+ab+bc)+b^2c^2\geq 0\)
Đặt \(a^2+ab+ac=t\)
BĐT cần chứng minh \(\Leftrightarrow t(t+bc)+b^2c^2=(t-\frac{bc}{2})^2+\frac{3b^2c^2}{4}\geq 0\)
Luôn đúng vì bình phương của một số thực luôn là số không âm
Dấu bằng xảy ra khi \(2(a^2+ab+ac)=bc\) và \(bc=0\)
chứng minh các bất đẳng thức sau:
a) a2b+\(\frac{1}{b}\ge2a,\left(\forall a,b>0\right)\)
b) (a+b)(ab+1)≥4ab,(∀a,b>0)
c) (a+b)(a+2)(b+2)≥16ab, (∀a,b>0)
d) (1+\(\frac{a}{b}\))\(\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge8,\left(\forall a.b,c>0\right)\)
chứng minh các bất đẳng thức sau
a/ \(\left(a^2+b^2\right)\left(a^2+1\right)\ge4a^2b\) với mọi a,b
b/ \(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\) với mọi a,b,c>0
a) Áp dụng bất đẳng thức AM-GM :
\(\left(a^2+b^2\right)\left(a^2+1\right)\ge2\sqrt{a^2b^2}.2\sqrt{a^2}\ge2ab.2a=4a^2b\)
b) Áp dụng bất đẳng thức :\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x;y>0\)
\(\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{a+3b+b+2c+a}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
Tương tự \(\hept{\begin{cases}\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{2}{b+2c+a}\\\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{b+2a+c}\end{cases}}\)
Cộng vế với vế ta được : \(VT+VP\ge2VP\Rightarrow VT\ge VP\)(đpcm)
Bài bất đẳng thức hay
Với \(a,b,c\ge0\)
Chứng minh rằng \(n\left(a^2+b^2+c^2\right)+2abc+n^3\ge2n\left(ab+bc+ac\right)\)
Với n = 1 đó là một kết quả rất quen thuộc:)) thôi em vào bài luôn, ko thì bị nhiều bạn bảo "nói linh tinh":v Em thử, ko chắc đâu nha, a thử check xem.
Theo nguyên lí Dirichlet, tồn tại ít nhất 2 trong 3 số a - n; b - n; c - n đồng dấu. Giả sử 2 số đó là a -n và b - n.
Thế thì \(\left(a-n\right)\left(b-n\right)\ge0\Rightarrow2abc\ge2acn+2bcn-2cn^2\)
Suy ra \(LHS\ge n\left(a^2+b^2+c^2\right)+\left(2acn+2bcn-2cn^2\right)+n^3\)
\(=n\left(a^2+b^2\right)+nc^2+n^3-2cn^2+2n\left(ac+bc\right)\)
\(\ge2n\left(ab+bc+ca\right)+nc^2+n^3-2cn^2\)
\(=2n\left(ab+bc+ca\right)+n\left(c^2+n^2-2cn\right)\)
\(=2n\left(ab+bc+ca\right)+n\left(c-n\right)^2\ge2n\left(ab+bc+ca\right)=RHS\)
Vậy ta có đpcm.
Đẳng thức xảy ra khi \(a=b=c=n\)