Cho x,y,z>0 và \(xy^2z^2+x^2z+y=3z^2\)
Tìm max của: \(P=\dfrac{z^4}{1+z^4\left(x^4+y^4\right)}\)
1. Tìm tất cả các số tự nhiên \(n\) để phân thức sau tối giản: \(A=\dfrac{2n^2+3n+1}{3n+1}\)
2. Cho các số thực dương x, y, z thỏa mãn \(xy^2z^2+x^2z+y=3z^2\) .Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{z^4}{1+z^4\left(x^4+y^4\right)}\)
1.
Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)
\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)
\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)
\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)
\(\Rightarrow n\) lẻ thì A không tối giản
\(\Rightarrow n\) chẵn thì A tối giản
2.
Giả thiết tương đương:
\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)
Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)
Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)
\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)
\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)
\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)
Cho x,y,z > 0 và \(xy^2z^2+x^2z+y=3z^2\). Tìm GTLN của \(P=\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)
Đặt \(\left(a;b;c\right)=\left(x;y;\frac{1}{z}\right)\Rightarrow ab^2+bc^2+ca^2=3\)
\(P=\frac{1}{a^4+b^4+c^4}\)
Ta có:
\(a^4+b^4+b^4+1\ge4ab^2\)
\(b^4+c^4+c^4+1\ge4bc^2\)
\(c^4+a^4+a^4+1\ge4ca^2\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=12\)
\(\Rightarrow a^4+b^4+c^4\ge3\)
\(\Rightarrow P\le1\)
theo định lí đi dép tổ ong thì 2 trong 3 số x-2;y-2;z-2 cùng dấu
giả sử \(\left(x-2\right)\left(y-2\right)\ge0\Leftrightarrow xy-2\left(x+y\right)+4\ge0\)
\(\Leftrightarrow xy-2\left(6-z\right)+4\ge0\)
<=>xy-8+2z>(=)0
<=>xyz+2z^2-8z>(=)0
<=>xyz>(=)8z-2z^2
\(x^2-xy+y^2\ge\frac{x^2+y^2}{2}\ge\frac{\left(x+y\right)^2}{4}=\frac{\left(6-z\right)^2}{4}=\frac{z^2}{4}-3z+9\)
xz+yz=z(x+y)=x(6-z)=6z-z2
\(\Rightarrow x^2+y^2+z^2-xy-yz-zx+xyz\ge\frac{z^2}{4}-3z+9+z^2+z^2-6z+8z-z^2=\frac{z^2}{4}-z+9=\left(\frac{z}{2}-1\right)^2+8\ge8\)
Giả sử x,y,z là các số dương thay đổi thỏa điều kiện \(xy^2z^2+x^2z+y=3z^2\). Hãy tìm giá trị lớn nhất của biểu thức:
\(P=\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)
Bài 1:
a)So sánh \(\left(\dfrac{3}{4}\right)^{2021}+1với\dfrac{3}{4}+1\)
b)Cho x,y,z khác 0 thỏa mãn
\(\dfrac{2x-3}{5}=\dfrac{5y-2z}{3}=\dfrac{3z-5x}{2}\)
Tính GTBT: B=\(\dfrac{12x-5y-3z}{x-3y+2z}\)
help me ai nhanh nhất mik tích cho
a) Ta có: \(\left(\dfrac{3}{4}\right)^{2021}>\left(\dfrac{3}{4}\right)^1=\dfrac{3}{4}\)
\(\Leftrightarrow\left(\dfrac{3}{4}\right)^{2021}+1>\dfrac{3}{4}+1\)
Đề:
Giá trị của y thoả mãn x2 + y2 + z2 = xy + 3y + 2z - 4 với x, y, z \(\in\) Z.
Giải:
x2 + y2 + z2 = xy + 3y + 2z - 4
x2 - xy + y2 - 3y + z2 - 2z + 4 = 0
\(x^2-2\times x\times\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}-3y+3+z^2-2z+1=0\)
\(\left(x-\frac{y}{2}\right)^2+3\left(\frac{y^2}{4}-2\times\frac{y}{2}\times1+1^2\right)+\left(z-1\right)^2=0\)
\(\left(x-\frac{y}{2}\right)+3\left(\frac{y}{2}-1\right)^2+\left(z-1\right)^2=0\)
\(\left\{\begin{matrix}x-\frac{y}{2}=0\\\frac{y}{2}-1=0\\z-1=0\end{matrix}\right.\)
\(\frac{y}{2}=1\)
\(y=2\)
ĐS: 2
~ Nana ~
Cho \(x,y,z\ge0,x+y+z=2\)
CMR: \(x^2y+y^2z+z^2x\le x^3+y^3+z^3\le1+\dfrac{1}{2}\left(x^4+y^4+z^4\right)\)
BĐT bên trái rất đơn giản, chỉ cần áp dụng:
\(x^3+x^3+y^3\ge3x^2y\) ; tương tự và cộng lại và được
Ta chứng minh BĐT bên phải:
\(\Leftrightarrow x^4+y^4+z^4+2\ge2\left(x^3+y^3+z^3\right)=\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)
\(\Leftrightarrow2\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)
\(\Leftrightarrow\dfrac{1}{8}\left(x+y+z\right)^4\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)
Thật vậy, ta có:
\(\dfrac{1}{8}\left(x+y+z\right)^4=\dfrac{1}{8}\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]^2\)
\(\ge\dfrac{1}{8}.4\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)=\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)
\(=x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)+xyz\left(x+y+z\right)\)
\(\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và hoán vị
Cho x,y,z khác 0 thỏa mãn \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\\dfrac{2}{xy}-\dfrac{1}{z^2}=4\end{matrix}\right.\)
Tính P=(x+y+2z)2018
giúp mình vs ạ!!!
Giả sử x, y, z là các số dương thỏa mãn điều kiện \(xy^2z^2+x^2z+y=3z^2\)
Tìm GTLN P =\(z^4 \over 1+z^4 (x^4+y^4)\)
Gỉa thiết tương đương với \(xy^2+\frac{x^2}{z}+\frac{y}{z^2}=3\)
Đặt \(a=x;b=y;c=\frac{1}{z}\)khi đó bài toán quy về
\(ab^2+a^2c+c^2b=3\)Tìm GTLN của \(P=\frac{1}{a^4+b^4+c^4}\)
Sử dụng BĐT AM-GM ta có :
\(a^4+b^4+b^4+1\ge4\sqrt[4]{a^4b^4b^4}=4ab^2\)
Bằng cách chứng minh tương tự ta được :
\(b^4+c^4+c^4+1\ge4bc^2\); \(c^4+a^4+a^4+1\ge4ca^2\)
Cộng theo vế các bđt cùng chiều ta được :
\(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=4.3=12\)
\(< =>a^4+b^4+c^4+1\ge\frac{12}{3}=4\)
\(< =>a^4+b^4+c^4\ge4-1=3\)
Vậy \(P\le\frac{1}{3}\)Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1< =>x=y=z=1\)