Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
loancute
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 18:46

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

Nguyễn Việt Lâm
21 tháng 1 2021 lúc 18:55

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)

Lunox Butterfly Seraphim
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 10 2020 lúc 16:53

Đặt \(\left(a;b;c\right)=\left(x;y;\frac{1}{z}\right)\Rightarrow ab^2+bc^2+ca^2=3\)

\(P=\frac{1}{a^4+b^4+c^4}\)

Ta có:

\(a^4+b^4+b^4+1\ge4ab^2\)

\(b^4+c^4+c^4+1\ge4bc^2\)

\(c^4+a^4+a^4+1\ge4ca^2\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=12\)

\(\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow P\le1\)

Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
Vương Hoàng Minh
Xem chi tiết
Xem chi tiết

help me ai nhanh nhất mik tích cho

Nguyễn Lê Phước Thịnh
31 tháng 3 2021 lúc 18:39

a) Ta có: \(\left(\dfrac{3}{4}\right)^{2021}>\left(\dfrac{3}{4}\right)^1=\dfrac{3}{4}\)

\(\Leftrightarrow\left(\dfrac{3}{4}\right)^{2021}+1>\dfrac{3}{4}+1\)

♡ ♡ ♡ ♡ ♡
Xem chi tiết
Bùi Thị Hải Châu
24 tháng 1 2017 lúc 7:14

???lolangnhonhung

Trần Thiên Kim
29 tháng 1 2017 lúc 17:04

P.An hở

Trịnh Trân Trân
2 tháng 2 2017 lúc 15:39

Hay :) :) :)

Luyri Vũ
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 6 2021 lúc 8:56

BĐT bên trái rất đơn giản, chỉ cần áp dụng:

\(x^3+x^3+y^3\ge3x^2y\) ; tương tự và cộng lại và được

Ta chứng minh BĐT bên phải:

\(\Leftrightarrow x^4+y^4+z^4+2\ge2\left(x^3+y^3+z^3\right)=\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)

\(\Leftrightarrow2\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)

\(\Leftrightarrow\dfrac{1}{8}\left(x+y+z\right)^4\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)

Thật vậy, ta có:

\(\dfrac{1}{8}\left(x+y+z\right)^4=\dfrac{1}{8}\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]^2\)

\(\ge\dfrac{1}{8}.4\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)=\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(=x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)+xyz\left(x+y+z\right)\)

\(\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và hoán vị

Trịnh Ánh My
Xem chi tiết
Nguyễn Hoàn Long
Xem chi tiết
Phan Nghĩa
30 tháng 8 2020 lúc 8:28

Gỉa thiết tương đương với \(xy^2+\frac{x^2}{z}+\frac{y}{z^2}=3\)

Đặt \(a=x;b=y;c=\frac{1}{z}\)khi đó bài toán quy về 

\(ab^2+a^2c+c^2b=3\)Tìm GTLN của \(P=\frac{1}{a^4+b^4+c^4}\)

Sử dụng BĐT AM-GM ta có :

\(a^4+b^4+b^4+1\ge4\sqrt[4]{a^4b^4b^4}=4ab^2\)

Bằng cách chứng minh tương tự ta được :

\(b^4+c^4+c^4+1\ge4bc^2\)\(c^4+a^4+a^4+1\ge4ca^2\)

Cộng theo vế các bđt cùng chiều ta được :

\(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=4.3=12\)

\(< =>a^4+b^4+c^4+1\ge\frac{12}{3}=4\)

\(< =>a^4+b^4+c^4\ge4-1=3\)

Vậy \(P\le\frac{1}{3}\)Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1< =>x=y=z=1\)

Khách vãng lai đã xóa