Cho x,y,z > 0 và \(xy^2z^2+x^2z+y=3z^2\). Tìm GTLN của \(P=\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)
Cho \(x,y,z\ge0,x+y+z=2\)
CMR: \(x^2y+y^2z+z^2x\le x^3+y^3+z^3\le1+\dfrac{1}{2}\left(x^4+y^4+z^4\right)\)
\(\left\{{}\begin{matrix}0< z\le y\le z\le3\\\dfrac{3}{xy}+\dfrac{2}{yz}\ge1\\\dfrac{18}{x^2y}+\dfrac{4}{y^2z}+\dfrac{3}{z^2x}\ge3\end{matrix}\right.\)
tìm max \(P=\dfrac{1}{2xyz}+\dfrac{80}{27x^3}+\dfrac{18}{8y^3}\)
Cho x,y,z>0 và \(x+y+z\le\dfrac{3}{4}\). Tìm Min A = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z> 0 và xy+yz+xz = 3xyz . Tìm MaxP = \(\Sigma\dfrac{yz}{x^3\left(z+2y\right)}\)
Cho x>0, y>0, z>0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
Cho \(x^4+y^4+z^4=3\). Tìm Max P = \(x^2\left(x+y\right)+y^2\left(y+z\right)+z^2\left(x+z\right)\)
cho x,y,z >0 thoả mãn \(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=8\)
tìm Max: \(P=\dfrac{x^2+y^2+z^2+14xyz}{4\left(x+y+z\right)+15xyz}\)
Cho các số dương x;y;z thỏa mãn : \(x+y+z=3\) . CMR :
\(\dfrac{2x^2+y^2+z^2}{4-yz}+\dfrac{2y^2+z^2+x^2}{4-zx}+\dfrac{2z^2+x^2+y^2}{4-xy}\ge4xyz\)
Cho các số thực dương x, y, z thoả mãn: \(x+y+z=3\). Chứng minh rằng: \(\dfrac{2x^2+y^2+z^2}{4-yz}+\dfrac{2y^2+z^2+x^2}{4-zx}+\dfrac{2z^2+x^2+y^2}{4-xy}\ge4xyz\)