Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 20:20

a.

\(x=9-\dfrac{1}{\sqrt{\dfrac{9-4\sqrt{5}}{4}}}+\dfrac{1}{\sqrt{\dfrac{9+4\sqrt{5}}{4}}}\\ x=9-\dfrac{1}{\dfrac{\sqrt{5}-2}{2}}+\dfrac{1}{\dfrac{\sqrt{5}+2}{2}}\\ x=9-\left(\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}\right)=9-8=1\\ \Rightarrow f\left(x\right)=f\left(1\right)=\left(1-1+1\right)^{2016}=1\)

Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 20:32

c.

\(=\sin x\cdot\cos x+\dfrac{\sin^2x}{1+\dfrac{\cos x}{\sin x}}+\dfrac{\cos^2x}{1+\dfrac{\sin x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^2x}{\dfrac{\sin x+\cos x}{\sin x}}+\dfrac{\cos^2x}{\dfrac{\sin x+\cos x}{\cos x}}\\ =\sin x\cdot\cos x+\dfrac{\sin^3x}{\sin x+\cos x}+\dfrac{\cos^3x}{\sin x+\cos x}\\ =\sin x\cdot\cos x+\dfrac{\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cdot\cos x+\cos^2x\right)}{\sin x+\cos x}\\ =\sin x\cdot\cos x-\sin x\cdot\cos x+\sin^2x+\cos^2x\\ =1\)

Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 20:44

d.

\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{-a-5b\sqrt{5}}{\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)}=-9-20\sqrt{5}\\ \Leftrightarrow\dfrac{a+5b\sqrt{5}}{a^2-5b^2}=9+20\sqrt{5}\\ \Leftrightarrow\left(9+20\sqrt{5}\right)\left(a^2-5b^2\right)=a+5b\sqrt{5}\\ \Leftrightarrow9\left(a^2-5b^2\right)+\sqrt{5}\left(20a^2-100b^2\right)-5b\sqrt{5}=a\\ \Leftrightarrow\sqrt{5}\left(20a^2-100b^2-5b\right)=9a^2-45b^2+a\)

Vì \(\sqrt{5}\) vô tỉ nên để \(\sqrt{5}\left(20a^2-100b^2-5b\right)\) nguyên thì

\(\left\{{}\begin{matrix}20a^2-100b^2-5b=0\\9a^2-45b^2+a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}180a^2-900b^2-45b=0\\180a^2-900b^2+20a=0\end{matrix}\right.\\ \Leftrightarrow20a+45b=0\\ \Leftrightarrow4a+9b=0\Leftrightarrow a=-\dfrac{9}{4}b\\ \Leftrightarrow9a^2-45b^2+a=\dfrac{729}{16}b^2-45b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow\dfrac{9}{16}b^2-\dfrac{9}{4}b=0\\ \Leftrightarrow b\left(\dfrac{9}{16}b-\dfrac{9}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}b=0\\b=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=9\end{matrix}\right.\)

Với \(\left(a;b\right)=\left(0;0\right)\left(loại\right)\)

Vậy \(\left(a;b\right)=\left(9;4\right)\)

mon wang
Xem chi tiết
Quỳnh Giang Bùi
10 tháng 10 2017 lúc 21:09

ta có: \(\left(\sqrt{2017^2-1}-\sqrt{2016^2-1}\right)\left(\sqrt{2017^2-1}+\sqrt{2016^2-1}\right)\)

= 20172-1 - (20162-1)

= 20172-20162

= 2017+2016 > 2.2016

=> \(\sqrt{2017^2-1}-\sqrt{2016^2-1}\)\(>\) \(\frac{2.2016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}\)

Thắng  Hoàng
10 tháng 10 2017 lúc 20:56

em ko biết

mon wang
10 tháng 10 2017 lúc 21:09

k pải chứ

Nguyễn Lâm Ngọc
Xem chi tiết
Đinh Đức Hùng
22 tháng 12 2017 lúc 12:34

Ta có :

\(\sqrt{2017^2-1}-\sqrt{2016^2-1}=\frac{2017^2-1-2016^2+1}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}=\frac{2017+2016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}\)

\(>\frac{2016+2016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}=\frac{2.2016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}\)

Vậy \(\sqrt{2017^2-1}-\sqrt{2016^2-1}>\frac{2.2016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}\)

Trần Tuấn Trọng
Xem chi tiết
Nga Mạc Phương
Xem chi tiết
Nguyễn Quốc Gia Huy
17 tháng 8 2017 lúc 16:01

Ta có:

\(\frac{1-\sqrt{n}+\sqrt{n+1}}{1+\sqrt{n}+\sqrt{n+1}}=\frac{\left(1-\sqrt{n}+\sqrt{n+1}\right)^2}{\left(1+\sqrt{n}+\sqrt{n+1}\right)\left(1-\sqrt{n}+\sqrt{n+1}\right)}=\frac{2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}}{2\left(1+\sqrt{n+1}\right)}\)

\(=\frac{\left[2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}\right]\left(1-\sqrt{n+1}\right)}{2\left(1+\sqrt{n+1}\right)\left(1-\sqrt{n+1}\right)}=\frac{-2n\sqrt{n+1}+2n\sqrt{n}}{-2n}=\sqrt{n+1}-\sqrt{n}\)

Suy ra:

\(Q=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2016}=\sqrt{2017}-\sqrt{2}< \sqrt{2017}-1=R\)

Vậy Q < R.

Phạm Phương Anh
Xem chi tiết
Akai Haruma
23 tháng 8 2020 lúc 10:19

Lời giải:
Xét số hạng tổng quát:

$\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}$

$=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}$

$=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}$

Do đó:

$S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}$

$=1-\frac{1}{\sqrt{2017}}$

Phạm Thị Duyên
Xem chi tiết
Nguyễn Ngọc Khanh (Team...
18 tháng 9 2020 lúc 22:23

\(A=\sqrt{\left(2017-1\right)\left(2017+1\right)}-\sqrt{\left(2016-1\right)\left(2016+1\right)}\)

\(=\sqrt{2016.2018}-\sqrt{2015.2017}< \sqrt{2018.2018}-\sqrt{2015.2015}\)

\(=2018-2015=3\)

\(\Rightarrow\frac{1}{A}>\frac{1}{3}\)

\(B=\frac{2.2016}{A}>\frac{2.2016}{3}=1344>3>A\)

Vậy ta được B lớn hơn A rất nhiều :))

Khách vãng lai đã xóa
Huyền Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 23:32

b: \(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2016}+\sqrt{2017}}\)

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

mà \(\sqrt{2016}+\sqrt{2017}< \sqrt{2016}+\sqrt{2015}\)

nên \(\sqrt{2017}-\sqrt{2016}>\sqrt{2016}-\sqrt{2015}\)

Nguyễn Thị Phụng
Xem chi tiết
Do What You Love
14 tháng 6 2017 lúc 19:41

a,\(\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}}\\ =\sqrt{2+3+1+2\sqrt{2}.1+2\sqrt{3}.1+2\sqrt{2}.\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+1\right)^2}=\sqrt{2}+\sqrt{3}+1\)