Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Khánh Huyền
Xem chi tiết
le thi khanh huyen
Xem chi tiết
Phung Cong Anh
10 tháng 1 2019 lúc 20:17

<  nha

hoc tot

alibaba nguyễn
11 tháng 1 2019 lúc 14:05

Giả sử \(\sqrt{2009}\ge2\sqrt{2008}-\sqrt{2007}\)

\(\Leftrightarrow\sqrt{2009}-\sqrt{2008}\ge\sqrt{2008}-\sqrt{2007}\)

\(\Leftrightarrow\frac{1}{\sqrt{2009}+\sqrt{2008}}\ge\frac{1}{\sqrt{2008}+\sqrt{2007}}\) (sai)

Vậy \(\sqrt{2009}< 2\sqrt{2008}-\sqrt{2007}\)

Chi Nguyễn Khánh
Xem chi tiết
Hung nguyen
31 tháng 7 2018 lúc 8:51

a/ Ta có:

\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

Nguyễn Tấn An
31 tháng 7 2018 lúc 8:55

a.\(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2019}-\sqrt{2018}}{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

Hung nguyen
31 tháng 7 2018 lúc 8:58

b/ \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow B=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2017}}-\dfrac{1}{\sqrt{2018}}=1-\dfrac{1}{\sqrt{2018}}\)

Trương  quang huy hoàng
Xem chi tiết
Akai Haruma
11 tháng 11 2018 lúc 23:38

Lời giải:

Câu GPT: bạn xem lại đề bài.

Câu so sánh

Áp dụng hằng đẳng thức: \((a-b)(a+b)=a^2-b^2\Rightarrow a-b=\frac{a^2-b^2}{a+b}\) vào bài toán ta có:

\(\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)

\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)

Mà dễ thấy \(0< \sqrt{2018}+\sqrt{2017}< \sqrt{2019}+\sqrt{2018}\Rightarrow \frac{1}{\sqrt{2018}+\sqrt{2017}}> \frac{1}{\sqrt{2019}+\sqrt{2018}}\)

\(\Rightarrow \sqrt{2018}-\sqrt{2017}> \sqrt{2019}-\sqrt{2018}\)

tthnew
18 tháng 6 2019 lúc 11:49

Akai Haruma cô ơi em có cách khác câu so sánh mặc dù có lẽ cách này không hay và ngắn gọn như của cô:) (câu gpt thì cách em hệt của cô rồi)

Xét hiệu hai vế: \(\sqrt{2018}-\sqrt{2017}-\sqrt{2019}+\sqrt{2018}\)

\(=2\sqrt{2018}-\left(\sqrt{2019}+\sqrt{2017}\right)\)

\(=2\sqrt{2018}-\frac{2}{\sqrt{2019}-\sqrt{2017}}\)

\(=2\left(\sqrt{2018}-\frac{1}{\sqrt{2019}-\sqrt{2017}}\right)\)

Ta có: \(\sqrt{2018}>1;\sqrt{2019}-\sqrt{2017}>0\Rightarrow\frac{1}{\sqrt{2019}-\sqrt{2017}}< 0\)

Từ đây suy ra \(2\left(\sqrt{2018}-\frac{1}{\sqrt{2019}-\sqrt{2017}}\right)>2\left(1-1\right)=0\)

Suy ra \(\sqrt{2018}-\sqrt{2017}>\sqrt{2019}-\sqrt{2018}\)

quangduy
Xem chi tiết
cielxelizabeth
Xem chi tiết
phạm trí dũng
22 tháng 10 2019 lúc 21:23

a, \(\frac{\sqrt{2}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\)-\(\frac{3\left(1+\sqrt{3}\right)}{1+\sqrt{3}}\)

=\(\sqrt{2}-3\)

b,X=\(\sqrt{2019}+\sqrt{2018}\)

(Khử mẫu,nhân tử&mẫu vs\(\sqrt{2019}+\sqrt{2018}\))

Y=\(\sqrt{2018}+\sqrt{2017}\)

(Khử mẫu,nhân tử&mẫu vs\(\sqrt{2018}+\sqrt{2017}\))

So sánh:X & Y<=>X-\(\sqrt{2018}\)&Y-\(\sqrt{2018}\)(Trừ hai vế cho \(\sqrt{2018}\)) <=>\(\sqrt{2019}\)&\(\sqrt{2017}\)

Có:2019>2017

=>\(\sqrt{2019}>\sqrt{2017}\)

=>X>Y

Câu b, mk ko bt có lm đúng ko?

Khách vãng lai đã xóa
le thi khanh huyen
Xem chi tiết
Dương Lam Hàng
1 tháng 8 2018 lúc 8:19

a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)

                                                              \(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)

                                                                \(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)

Vậy x < y

titanic
Xem chi tiết
alibaba nguyễn
12 tháng 9 2018 lúc 13:45

\(x=1-\sqrt[2]{2}+\sqrt[2]{4}\)

\(\Leftrightarrow x\left(\sqrt[3]{2}+1\right)=\left(1-\sqrt[2]{2}+\sqrt[2]{4}\right)\left(\sqrt[3]{2}+1\right)=3\)

\(\Leftrightarrow\sqrt[3]{2}x=3-x\)

\(\Leftrightarrow2x^3=27-27x+9x^2-x^3\)

\(\Leftrightarrow x^3-3x^2+9x-9=0\)

Giờ tự rap xô vô nhe

LE KIM ANH
Xem chi tiết
LE KIM ANH
11 tháng 3 2019 lúc 22:41

giai chi tiet giup minh voi 

Kyozou
11 tháng 3 2019 lúc 22:46

2018/-2017<-1=-2019/2019

suy ra 2018/-2017<-2019/2019

Kiệt Nguyễn
12 tháng 3 2019 lúc 6:32

                            Giải

Ta có: \(\frac{2018}{-2017}=-1+\frac{-1}{2017}\)

\(\Rightarrow\frac{2018}{-2017}>-1\)

Mà \(\frac{-2019}{2019}=1\) nên \(\frac{2018}{-2017}>\frac{-2019}{2019}\)