giải phương trình: 4x+2x=3x=1
So sánh\(A=\sqrt{2018}-\sqrt{2017}và\sqrt{2019}-\sqrt{2018}\)
Tìm các số hữu tỉ x, y thoả mãn đẳng thức: \(x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=\sqrt{2019^3}+\sqrt{2018^3}\)
so sánh \(\sqrt{2017}\)với \(\sqrt{2018}\)với \(\sqrt{2019}\)
Không sử dụng máy tính hãy so sánh : A=\(\frac{2017}{\sqrt{2018}}+\frac{2018}{\sqrt{2017}}\) và B=\(\sqrt{2017}+\sqrt{2018}\)
so sánh \(\sqrt{2019^2-1}-\sqrt{2018^2-1}\)và \(\dfrac{2.2018}{\sqrt{2019^2-1}+\sqrt{2018^2-1}}\)
\(\sqrt{x+2018}+\sqrt{y-2019}+\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z\right)\)
Chứng minh rằng : \(2019/ \sqrt[2]{2018} + 2018/\sqrt[2]{2019} > \sqrt[2]{2018} + \sqrt[2]{2019}\)
Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
\(\sqrt{x^2-2x+2018}+2019.\sqrt{x^4+2x^2+2020}=2018\)
Giúp mik vs ạ