cái . ở giữa 2019 . \(\sqrt{x^4}\) là x hay bài khác vậy ?
cái . ở giữa 2019 . \(\sqrt{x^4}\) là x hay bài khác vậy ?
Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
Tìm giá trị nhỏ nhất của biểu thức :
A= \(\sqrt{x-2\sqrt{x-3}}\)
B=\(\sqrt{\left(x-2018\right)^2}+\sqrt{\left(x-1\right)^2}\)
D=\(\sqrt{\left(2x-1\right)^2+\sqrt{\left(2x+2018\right)^2}}\)
Chứng minh rằng : \(2019/ \sqrt[2]{2018} + 2018/\sqrt[2]{2019} > \sqrt[2]{2018} + \sqrt[2]{2019}\)
giải phương trình: 4x+2x=3x=1
So sánh\(A=\sqrt{2018}-\sqrt{2017}và\sqrt{2019}-\sqrt{2018}\)
Tìm các số hữu tỉ x, y thoả mãn đẳng thức: \(x\left(\sqrt{2019}+\sqrt{2018}\right)+y\left(\sqrt{2019}-\sqrt{2018}\right)=\sqrt{2019^3}+\sqrt{2018^3}\)
Tính giá trị của biểu thức \(P=\dfrac{4\left(x+1\right)x^{2018}-2x^{2017}+2x+1}{2x^2+3x}\) tại \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2\sqrt{3}+2}}\)
Cho \(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}=7\) . Tính A=\(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\)
Mik cần gấp mn giúp vs ạ
\(\sqrt{2018}-\sqrt{2019}\) và \(\sqrt{2019}-\sqrt{2020}\)
SO SÁNH
giải phương trình sau:\(\left(1+\sqrt{x^2+2020x}+2019\right)\left(\sqrt{x+2019}-\sqrt{x+1}\right)=2018\)