Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ánh Dương

Giải phương trình:

a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)

b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)

c) \(\sqrt{3+\sqrt{3+x}}=x\)

d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)

e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)

f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)

Nguyễn Việt Lâm
24 tháng 10 2019 lúc 21:01

a/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)

\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)

\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)

b/ ĐKXĐ: ....

Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)

\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)

\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 10 2019 lúc 21:17

a/ ĐK: \(x\ge0\)

\(\Leftrightarrow\sqrt{3+x}=x^2-3\)

Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:

\(a=x^2-\left(a^2-x\right)\)

\(\Leftrightarrow x^2-a^2+x-a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)

\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))

\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)

d/ ĐKXĐ: ...

\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)

\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)

\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 10 2019 lúc 21:27

e/ ĐKXĐ: \(x\ge0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+3x+5}=a>0\\\sqrt{x^2-2x+5}=b>0\\\sqrt{x}=c\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=5c^2\)

Ta được hệ: \(\left\{{}\begin{matrix}a^2-b^2=5c^2\\a+b=5c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=5c^2\\a+b=5c\end{matrix}\right.\)

\(\Rightarrow5c\left(a-b\right)=5c^2\)

\(\Leftrightarrow\left[{}\begin{matrix}c=0\\a-b=c\end{matrix}\right.\)

f/ ĐKXĐ: \(x>0\)

\(\Leftrightarrow\sqrt{x\left(x+3\right)}+2\sqrt{x+2}=2x+\sqrt{\frac{\left(x+2\right)\left(x+3\right)}{x}}\)

\(\Leftrightarrow\sqrt{\frac{\left(x+2\right)\left(x+3\right)}{x}}-2\sqrt{x+2}+2x-2\sqrt{x\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{\frac{x+2}{x}}\left(\sqrt{x+3}-2\sqrt{x}\right)-2\sqrt{x}\left(\sqrt{x+3}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\left(\sqrt{\frac{x+2}{x}}-2\sqrt{x}\right)\left(\sqrt{x+3}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{x+3}{x}=4x\\x+3=4x\end{matrix}\right.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Ánh Dương
Xem chi tiết
Nguyễn Thành Nam
Xem chi tiết
Quách Thành Thống
Xem chi tiết
Hoài Dung
Xem chi tiết
gaarakazekage
Xem chi tiết
Anh Quynh
Xem chi tiết
Thiên Yết
Xem chi tiết
Lê Lan Hương
Xem chi tiết
Trần Thị Hảo
Xem chi tiết