1240-{[(475-50):5+2 mũ 4]:3 mũ 2}+150 mũ 0
1. 6 X mũ 3 -8 =40
2. 4 X mũ 5 +15=47
3. 2 X mũ 3-4=12
4. 5 X mũ 3-5=0
5. (X -5) mũ 2016 = (X-5) mũ 2018
6. (3X -2) mũ 20= (3X-1) mũ 20
7. (3X -1) mũ 10 = (3X-1) mũ 20
8. (2X -1) mũ 50 = 2X-1
9. (X phần 3 -5) mũ 2000= ( X phần 3-5) mũ 2008
1. \(6x^3-8=40\\ 6x^3=48\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
2. \(4x^5+15=47\\ 4x^5=32\\ x^5=8\\ \Rightarrow x\in\varnothing\left(\text{vì }x\in N\right)\)Vậy x ∈ ∅
3. \(2x^3-4=12\\ 2x^3=16\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
4. \(5x^3-5=0\\ 5x^3=5\\ x^3=1\\ \Rightarrow x=1\)Vậy x = 1
5. \(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)Vậy \(x\in\left\{5;6\right\}\)
6. \(\left(3x-2\right)^{20}=\left(3x-1\right)^{20}\\ \Rightarrow3x-2=3x-1\\ 3x-3x=2-1\\ 0=1\left(\text{vô lí}\right)\)Vậy x ∈ ∅
7. \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\\ \left(3x-1\right)^{10}=\left[\left(3x-1\right)^2\right]^{10}\\ \Rightarrow\left(3x-1\right)^2=3x-1\\ \left(3x-1\right)^2-\left(3x-1\right)=0\\ \left(3x-1\right)\left[\left(3x-1\right)-1\right]=0\\ \left(3x-1\right)\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=1\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(\text{loại vì }x\in N\right)\\x=\frac{2}{3}\left(\text{loại vì }x\in N\right)\end{matrix}\right.\)Vậy x ∈ ∅
8. \(\left(2x-1\right)^{50}=2x-1\\ \left(2x-1\right)^{50}-\left(2x-1\right)=0\\ \left(2x-1\right)\left[\left(2x-1\right)^{49}-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^{49}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=1\\2x-1=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\left(\text{loại vì }x\in N\right)\\x=1\left(t/m\right)\end{matrix}\right.\)Vậy x = 1
9. \(\left(\frac{x}{3}-5\right)^{2000}=\left(\frac{x}{3}-5\right)^{2008}\\ \left(\frac{x}{3}-5\right)^{2008}-\left(\frac{x}{3}-5\right)^{2000}=0\\ \left(\frac{x}{3}-5\right)^{2000}\left[\left(\frac{x}{3}-5\right)^8-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(\frac{x}{3}-5\right)^{2000}=0\\\left(\frac{x}{3}-5\right)^8=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}-5=0\\\frac{x}{3}-5=1\\\frac{x}{3}-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}=5\\\frac{x}{3}=6\\\frac{x}{3}=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\cdot3=15\\x=6\cdot3=18\\x=4\cdot3=12\end{matrix}\right.\)Vậy \(x\in\left\{15;18;12\right\}\)
\(1.6x^3-8=40\\ \Leftrightarrow6x^3=48\\ \Leftrightarrow x^3=8\Leftrightarrow x^3=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
\(2.4x^3+15=47\) (T nghĩ đề là mũ 3)
\(\Leftrightarrow4x^3=32\Leftrightarrow x^3=8=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 3, 4 tương tự nhé.
\(5.\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Leftrightarrow\left(x-5\right)^{2018}-\left(x-5\right)^{2016}=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left[\left(x-5\right)^2-1\right]=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left(x-5-1\right)\left(x-5+1\right)=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left(x-6\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)^{2016}=0\\x-6=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x=6\\x=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
Vậy \(x\in\left\{4;5;6\right\}\)
3 mũ 3. 5 mũ 3 - 20 . { 546 - 2 mũ 3 ( 7 mũ 8 : 7 mũ 6 + 7 mũ 0 )]}
62500: {50 mũ 2 : [112-(52-2 mũ 3. 5)]}
Bài làm
33.53-20.{546-23.(78:76+70)}
=27.125-20.{546-8.50}
=27.125-20.{546-400}
=3375-20.146
=3357-2920
=455
62500:{502:[112-(52-23.5)]}
=62 500:{250:[112-(52-40)]}
=62 500:{250:[112-12]
=62 500:{250:100}
=62 500:2,5
=25 000
1)180 : 12 - 3 mũ 2 =
2)2 . 5 mũ 2 - 36 : 3 mũ 2 =
3) 3 mũ 3 . 19 - 3 mũ 3 . 12 =
4) 3 . 5 mũ 2 - 16 : 2 mũ 2 =
5) 20 - [ 30 - ( 5 - 1) mũ 2] =
6) ( 51 . 63 - 37 . 51) : 51 =
7) 120 - [130 - (5 - 1) mũ 3] =
8) 150 - [ 10 mũ 2 -( 14 - 11 ) mũ 2 . 2007 mũ 0] =
9) 3 mũ 2 . ( 200 : 4 + 13. 5 ) - 3 mũ 2 . 15 =
10) 25 . { 610 : [ 600 - ( 260 + 5.7) ] } =
11) 2 mũ 2 + [ 10 mũ 5 : 10 mũ 4 -( 2 + 3.2) ] =
12) 3 mũ 4 + [ 75 : 15 + ( 10 - 8 ) mũ 4 + 5 mũ 3 =
13) 130 - 2 . [ ( 30 + 15 ) : 3 + 6]
3. 33.19-33.12=33.(19-12)=33.7=189
4. 3.52-16:22=3.52-24:22=3.25-4=75-4=71
1,So sánh
a, 0 mũ 2002 và 0 mũ 2023
b,2022 mũ 0 và 2023 mũ 0
c, 54 mũ 9 và 55 mũ 10
d,(4 + 5) mũ 3 và 4 mũ 2 + 5 mũ 2
đ,9 mũ 2 - 3 mũ 2 và (9-3)mũ 2
Bài 2:Tính giá trị biểu thức
a, 3 mũ 2 x 4 mũ 3 - 3 mũ 2 + 333
b, 5 x 4 mũ 3 + 24 x 5 + 41 mũ 0
c, 2 mũ 3 x 4 mũ 2 + 3 mũ 2 x 5 - 40 x 1 mũ 2023
Giúp mình với,mình đang cần !!
Bài 1:
a) 02002 < 02023
b) 20220 = 20230
c) 549 < 5510
d) ( 4 + 5 )3 > 42 + 52
đ) 92 - 32 > ( 9 - 3 )2
Bài 2:
a) 32 x 43 - 32 + 333
= 9 x 64 - 9 + 333
= 576 - 9 + 333
= 567 + 333
= 900
b) 5 x 43 + 24 x 5 + 410
= 5 x 64 + 24 x 5 + 1
= 5 x ( 64 + 24 ) + 1
= 5 x 88 + 1
= 440 + 1
= 441
c) 23 x 42 + 32 x 5 - 40 x 12023
= 8 x 16 + 9 x 5 - 40 x 1
= 128 + 45 - 40
= 133
Bài 1 :
a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)
b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)
c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)
d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)
đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)
Bài 2 :
a) \(3^2.4^3-3^2+333=3^2\left(4^3-1\right)+9.37=9.63+9.37=9\left(63+37\right)=9.100=900\)
b) \(5.4^3+24.5+41^0=20.4^2+20.6+1=20\left(16+6\right)+1=20.22+1=441\)
c) \(2^3.4^2+3^2.5-40.1^{2023}=8.16+9.5-40.1=128+45-40=128+5=133\)
A=2 mũ 3 + 2 mũ 4 + 2 mũ 5 + 2 mũ 6 + 2 mũ 7 +.....+ 2 mũ 90
B=1+5+5 mũ 2 + 5 mũ 3 +5 mũ 4 +......+5 mũ 50
C=1/5 +1/5 mũ 2 + 1/5 mũ 3 + 1/5 mũ 4 +1/5 mũ 6 +......+1/5 mũ 102
D=1/5 +1/5 mũ 3 + 1/5 mũ 4 +1/5 mũ 5 + 1/5 mũ 6 +1/5 mũ 105
A = 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90
2A = 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100
2A - A = ( 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100 ) - ( 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90 )
A = 2^100 - 2^3
B = 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50
5B = 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51
5B - B = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50 )
4B = 5^51 - 1
B = 5^51 - 1 / 4
so sánh mà ko tính giá trị
a) 64 mũ 150 và 4 mũ 450
b) 81 mũ 64 và 27 mũ 100
c) 125 mũ 1000 và 25 mũ 3000
d) 4 mũ 30 và 3 mũ 40
m) 2 mũ 5000 và 5 mũ 2000
h) 6 mũ 450 và 3 mũ 750
0) 333 mũ 444 và 444 mũ 333
`#3107.101107`
a)
`64^150` và `4^450`
Ta có:
`64^150 = (4^3)^150 = 4^(3*150) = 4^450`
Vì `450 = 450 => 4^450 = 4^450 => 64^150 = 4^450`
Vậy, `64^150 = 4^450`
b)
`81^64` và `27^100`
Ta có:
`81^64 = (3^4)^64 = 3^(4*64) = 3^256`
`27^100 = (3^3)^100 = 3^(3*100) = 3^300`
Vì `256 < 300 => 3^256 < 3^300 => 81^64 < 27^100`
Vậy, `81^64 < 27^100`
c)
`125^1000` và `25^3000`
Ta có:
`125^1000 = (5^3)^1000 = 5^(3*1000) = 5^3000`
Vì `5 < 25 => 5^3000 < 25^3000 => 125^1000 < 25^3000`
Vậy, `125^1000 < 25^3000`
d)
`4^30` và `3^40`
Ta có:
`4^30 = 4^(3*10) = (4^3)^10 = 64^10`
`3^40 = 3^(4*10) = (3^4)^10 = 81^10`
Vì `64 < 81 => 64^10 < 81^10 => 4^30 < 3^40`
Vậy, `4^30 < 3^40`
m)
`2^5000` và `5^2000`
Ta có:
`2^5000 = 2^(5*1000) = (2^5)^1000 = 32^1000`
`5^2000 = 5^(2*1000) = (5^2)^1000 = 25^1000`
Vì `32 > 25 => 32^1000 > 25^1000 => 2^5000 > 5^2000`
Vậy, `2^5000 > 5^2000`
h)
`6^450` và `3^750`
Ta có:
`6^450 = 6^(150*3) = (6^3)^150 = 216^150`
`3^750 = 3^(150*5) = (3^5)^150 = 243^150`
Vì `216 < 243 => 216^150 < 243^150 => 6^450 < 3^750`
Vậy, `6^450 < 3^750`
0)
`333^444` và `444^333`
Ta có:
`333^444 = 333^(4*111) = (333^4)^111 = (3^4 *111^4)^111 = 81^111 * 111^444`
`444^333 = 444^(3*111) = (444^3)^111 = (4^3 * 111^3)^111 = 64^111 * 111^333`
Vì `81 > 64;` `111^444 > 111^333`
`=> 81^111 * 111^444 > 64^111 * 111^333`
Vậy, `333^444 > 444^333.`
a) Ta có:
\(64^{150}=\left(2^6\right)^{150}=2^{900}\)
\(4^{450}=\left(2^2\right)^{450}=2^{900}\)
Mà: \(2^{900}=2^{900}\Rightarrow64^{150}=4^{450}\)
b) Ta có:
\(81^{64}=\left(3^4\right)^{64}=3^{256}\)
\(27^{100}=\left(3^3\right)^{100}=3^{300}\)
Mà: \(3^{300}>3^{256}\Rightarrow27^{100}>81^{64}\)
c) Ta có:
\(125^{1000}=\left(5^3\right)^{1000}=5^{3000}\)
Mà: \(25^{3000}>5^{3000}\Rightarrow25^{3000}>125^{1000}\)
d) Ta có:
\(4^{30}=\left(4^3\right)^{10}=64^{10}\)
\(3^{40}=\left(3^4\right)^{10}=81^{10}\)
Mà: \(81^{10}>64^{10}\Rightarrow3^{40}>4^{30}\)
m) Ta có:
\(2^{5000}=\left(2^5\right)^{1000}=32^{1000}\)
\(5^{2000}=\left(5^2\right)^{1000}=25^{1000}\)
Mà: \(25^{1000}< 32^{1000}\Rightarrow2^{5000}>5^{2000}\)
h) Ta có:
\(6^{450}=\left(6^3\right)^{150}=216^{150}\)
\(3^{750}=\left(3^5\right)^{150}=243^{150}\)
Mà: \(243^{150}>216^{150}\Rightarrow3^{750}>6^{450}\)
....
a) 4⁴⁵⁰ = (4³)¹⁵⁰ = 64¹⁵⁰
b) 81⁶⁴ = (3⁴)⁶⁴ = 3²⁵⁶
27¹⁰⁰ = (3³)¹⁰⁰ = 3³⁰⁰
Do 256 < 300 nên 3²⁵⁶ < 3³⁰⁰
Vậy 81⁶⁴ < 27¹⁰⁰
c) 125¹⁰⁰⁰ = (5³)¹⁰⁰⁰ = 5³⁰⁰⁰
Do 5 < 25 nên 5³⁰⁰⁰ < 25³⁰⁰⁰
Vậy 125¹⁰⁰⁰ < 25³⁰⁰⁰
d) 4³⁰ = (4³)¹⁰ = 64¹⁰
3⁴⁰ = (3⁴)¹⁰ = 81¹⁰
Do 64 < 81 nên 64¹⁰ < 81¹⁰
Vậy 4³⁰ < 3⁴⁰
m) 2⁵⁰⁰⁰ = (2⁵)¹⁰⁰⁰ = 32¹⁰⁰⁰
5²⁰⁰⁰ = (5²)¹⁰⁰⁰ = 25¹⁰⁰⁰
Do 32 > 25 nên 32¹⁰⁰⁰ > 25¹⁰⁰⁰
Vậy 2⁵⁰⁰⁰ > 5²⁰⁰⁰
h) 6⁴⁵⁰ = (6³)¹⁵⁰ = 216¹⁵⁰
3⁷⁵⁰ = (3⁵)¹⁵⁰ = 243¹⁵⁰
Do 216 < 243 nên 216¹⁵⁰ < 243¹⁵⁰
Vậy 6⁴⁵⁰ < 3⁷⁵⁰
o) 333⁴⁴⁴ = (333⁴)¹¹¹ = [(3.111)⁴]¹¹¹ = (3⁴.111⁴)¹¹¹ = (81.111⁴)¹¹¹
444³³³ = (444³)¹¹¹ = [(4.111)³]¹¹¹
= (4³.111³)¹¹¹ = (64.111³)¹¹¹
Do 81 > 64 ⇒ 81.111⁴ > 64.111⁴ (1)
Do 4 > 3 ⇒ 64.111⁴ > 64.111³ (2)
Từ (1) và (2) ⇒ 81.111⁴ > 64.111³
⇒ (81.111⁴)¹¹¹ > (64.111³)¹¹¹
Vậy 333⁴⁴⁴ > 444³³³
Thu gọn các tổng sau:
a) A = 1 + 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
b) B = 1 + 4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + ... + 4 mũ 100
c) C = 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 6 + .... + 5 mũ 200
d) D = 3 mũ 100 + 3 mũ 101 + 3 mũ 102 + .... + 3 mũ 150
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.
Ai giúp mình mình vsanf gâpd nhanh lên
Tìm số tự nhiên x
2x+53=153
2x-1 (x-1 ở trên) + 3 mũ 3 = 5 mũ 2+ 5 mũ 0.10
3x mũ 4+100=148
X+(x+1)+(x+2)+..(x+30)=1240
mình chỉ trả lời câu 1 thôi :v
2x + 53 = 153
=> 2x = 153 - 53
=> 2x = 100
=> x = 100 : 2
=> x = 50
câu 2 mình không hiểu đề bài lắm vì bạn ghi lạ quá
B=1+2+5+7+...+2025
C=2+4+6+8+...+2026
D=1+2 mũ 1+ 2 mũ 2+ 2 mũ 3+.... 2 mũ 150
E=1+4 mũ 1+ 4 mũ 2+.....+4 mũ 400
F= 1+ 4 mũ 1+ 4 mũ 2+....+4 mũ 400
G= 1 +5 mũ 1+ 5 mũ 2+ 5 mũ 3+....+5 mũ300
Hai bài trên áp dụng công thức với khoảng cách là 2.
Ta có:
\(D=1+2^1+2^2+2^3+.....+2^{150}\)
\(\Rightarrow2D-D=\left(2+2^2+2^3+2^4+.....+2^{151}\right)-\left(1+2+2^2+2^3+....+2^{150}\right)\)
\(\Rightarrow D=2^{151}-1\)
\(E=1+4^1+4^2+....+4^{400}\)
\(\Rightarrow4E-E=\left(4+4^2+4^3+....+4^{401}\right)-\left(1+4^1+4^2+....+4^{400}\right)\)
\(\Rightarrow E\left(4-1\right)=4^{401}-1\Leftrightarrow E=\frac{4^{401}-1}{4-1}\)
Các câu còn lại làm tương tự