tìm x
102*105x-2/10x=1000
54x-4/5x*25=1252*5x
(52x.5x+2):25 =1252
(52x.5x+2) : 25 = 1252
52x.5x+2 = 1252.25 = 56.52
52x+x+2 = 58
53x+2 = 58
=> 3x + 2 = 8
=> 3x = 6
=> x = 2
Ta có: \(\left(5^{2x}\cdot5^{x+2}\right):25=125^2\)
\(\Leftrightarrow5^{3x+2}=5^6\cdot5^2=5^8\)
hay x=2
Giải phương trình:
a) \(10x^4-27x^3+105x^2-72x+10=0\)
b) (4x-7)(\(x^2-5x+4\) ) (\(2x^2-7x+3\) ) =0
252.x : 5x =1252
Đề bài là: Tìm x
252\(x\) : 5\(x\) =1252
5\(^{4x}\) : 5\(^x\) = 56
5\(3x\) = 56
3\(x\) = 6
\(x\) = 2
Tìm x
252.x : 5x = 1252
Giúp tớ với
\(25^{2x}:5^x=125^2\)
\(\Rightarrow5^{4x}:5^x=\left(5^3\right)^2\)
\(\Rightarrow5^{4x-x}=5^6\)
\(\Rightarrow5^{3x}=5^6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
\(=\left(25^2\right)^x\div5x=125^2\)
\(=625^x\div5^x=125^2\)
\(=\left(625\div5\right)^x=125^2\)
\(=125^x=125^2\)
\(=>x=2\)
Tìm x biết:
a) (2x + 3)/(5x +2) = (4x + 5)/(10x + 2)
b) (3x - 1)/(40 - 5x) = (25 - 3x)/(5x - 34)
=>(2x+3).(10x+2)=(5x+2).(4x+5)
=>(2x.10x)+(2x.2)+(3.10x)+(3.2)=(5x.4x)+(5x.5)+(2.4x)+(2.5)
=>20x2+4x+30x+6=20x2+25x+8x+10
=>20x2-20x2+4x-8x+30x-25x=10-6
=>0+4x-8x+30x-25x=4
=>-4x+30x-25x=4
=>26x-25x=4
=>x=4
B)=>(3x-1).(5x-34)=(40-5x).(25-3x)
=>15x2-102x-5x+34=1000-120x-125x+15x2
=>15x2-107x+34=1000-245x+15x2
=>15x2-15x2-107x+245x=1000-34
=>0-107x+245x=966
=>138x=966
=>x=7
A,=>(2x+3).(10x+2)=(5x+2).(4x+5)
=>(2x.10x)+(2x.2)+(3.10x)+(3.2)=(5x.4x)+(5x.5)+(2.4x)+(2.5)
=>20x2+4x+30x+6=20x2+25x+8x+10
=>20x2-20x2+4x-8x+30x-25x=10-6
=>0+4x-8x+30x-25x=4
=>-4x+30x-25x=4
=>26x-25x=4
=>x=4
Tìm x biết:
a) (2x + 3)/(5x + 2) = (4x +5)/(10x + 2)
b) (3x - 1)/(40 - 5x) = (25 - 3x)/(5x - 34)
Cần giúp gấp
Tìm X:
a)(x-4)(x+4)=9
b)x2-4x+4-(5x-2)2=0
c)4x2+4+1-x2-10x-25=0
d)(x2+x+7)(x2+x-7)=(x2+x)2-7x
a)
⇔ \(x^2-16=9\)
⇔ \(x^2=25\)
⇔ \(x=\pm5\)
b)
⇔ \(x^2-4x+4-25x^2+20x-4=0\)
⇔ \(16x-24x^2=0\)
⇔ \(8x\left(2-3x\right)=0\)
⇒ \(\left[{}\begin{matrix}x=0\\2-3x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=\dfrac{2}{3}\)
c)
⇔ \(3x^2-10x-20=0\)
⇔ \(x^2-2.x.\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{205}{9}=0\)
⇔ \(\left(x-\dfrac{5}{3}\right)^2=\dfrac{205}{9}\)
⇒ \(\left[{}\begin{matrix}x-\dfrac{5}{3}=\sqrt{\dfrac{205}{9}}\\x-\dfrac{5}{3}=-\sqrt{\dfrac{205}{9}}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\\x=-\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\\\text{x}=-\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\end{matrix}\right.\)
Vậy...
d)
⇔ \(\left(x^2+x\right)^2-49=\left(x^2+x\right)^2-7x\)
⇔ 7x = 49
⇔ x=7
Vậy...
Cho biểu thức:
P = [x/(x^2-25) - (x-5)/(x^2+5x)] : (10x-25)/(x^2+5x) + x/(5-x)
Tìm giá trị nguyên của x để P nhận giá trị nguyên.
\(P=\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\)
\(=\left[\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right]:\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\)
\(=\left[\frac{x^2}{x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}\right]:\frac{10x-25}{x^2+5x}+\frac{x}{5-x}\)
\(=\frac{x^2-\left(x^2-10x+25\right)}{x\left(x-5\right)\left(x+5\right)}:\frac{10x-25}{x\left(x+5\right)}+\frac{x}{5-x}\)
\(=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{10x-25}+\frac{x}{5-x}\)
\(=\frac{1}{x-5}-\frac{x}{x-5}\)
\(=\frac{1-x}{x-5}=-\frac{x-1}{x-5}=-\frac{x-5+4}{x-5}=-1-\frac{4}{x-5}\)
Để P nguyên <=> x - 5 thuộc Ư(4) = {1;-1;2;-2;4;-4}
Ta có bảng:
x - 5 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 6 | 4 | 7 | 3 | 9 | 1 |
Vậy....
Tìm x:
a, \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
b,\(\frac{3x-1}{40-5x}=\frac{25-3x}{5x-34}\)
tim x
x^2-5x-4(x-5)=0
2x(x+6)=7x+42
x^3-5x^2+x-5=0
x^4-2x^3+10x^2-20x=0
(2x-3)-x^2+10x-25=0
\(x^2-5x-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
Vậy....
\(2x\left(x+6\right)=7x+42\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)
Vậy......
\(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy...