Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Đỗ Quyên
Xem chi tiết
Cả Út
14 tháng 7 2019 lúc 9:18

bài 2 : 

\(\left(3y-1\right)^{10}=\left(3y-1\right)^{20}\)

\(\Rightarrow\left(3y-1\right)^{20}-\left(3y-1\right)^{10}=0\)

\(\Rightarrow\left(3y-1\right)^{10}\left[\left(3y-1\right)^{10}-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(3y-1\right)^{10}=0\\\left(3y-1\right)^{10}-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3y-1=0\\\left(3y-1\right)^{10}=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3y=1\\3y-1=\pm1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=0\text{ }or\text{ }y=\frac{2}{3}\end{cases}}\)

BÀI  3

\(\left(x-5\right)^2=\left(1-3x\right)^2\)

\(\Rightarrow\left(x-5\right)^2-\left(1-3x\right)^2=0\)

\(\Rightarrow\left(x-5-1+3x\right)\left(x-5+1-3x\right)=0\)

\(\Rightarrow\left(4x-6\right)\left(-2x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4x-6=0\\-2x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}}\)

Đặng Quốc Huy
Xem chi tiết
Vũ Minh Tuấn
1 tháng 10 2019 lúc 18:28

\(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}\le0\)

Ta có:

\(\left\{{}\begin{matrix}\left(2x-5\right)^{2016}\ge0\\\left(3y+4\right)^{2018}\ge0\end{matrix}\right.\forall x.\)

\(\Rightarrow\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-5\right)^{2016}=0\\\left(3y+4\right)^{2016}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=0+5=5\\3y=0-4=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)

Chúc bạn học tốt!

Hoai Bao Tran
Xem chi tiết
Akai Haruma
22 tháng 1 2018 lúc 9:56

Lời giải:

Ta có: \((x+y)^3=xy(3x+3y+2)\)

\(\Leftrightarrow x^3+y^3+3xy(x+y)=3xy(x+y)+2xy\)

\(\Leftrightarrow x^3+y^3=2xy\)

Nếu trong hai số $x,y$ tồn tại số bằng $0$ thì \(\sqrt{1-xy}=1\in\mathbb{Q}\)

Nếu cả hai số $x,y$ đều khác $0$

Chia cả hai vế cho $xy$ ta thu được:

\(\frac{x^2}{y}+\frac{y^2}{x}=2\)

\(\Leftrightarrow \left(\frac{x^2}{y}+\frac{y^2}{x}\right)^2=4\)

\(\Leftrightarrow \frac{x^4}{y^2}+\frac{y^4}{x^2}+2xy=4\)

\(\Leftrightarrow \frac{x^4}{y^2}+\frac{y^4}{x^2}-2xy=4-4xy\)

\(\Leftrightarrow \left(\frac{x^2}{y}-\frac{y^2}{x}\right)^2=4(1-xy)\)

\(\Leftrightarrow 1-xy=\left(\frac{x^2}{2y}-\frac{y^2}{2x}\right)^2\)

\(\Rightarrow \sqrt{1-xy}=|\frac{x^2}{2y}-\frac{y^2}{2x}|\in \mathbb{Q}\) do \(x,y\in\mathbb{Q}\)

Ta có đpcm.

Trần Minh Hiển
Xem chi tiết
Nguyễn Quốc Nhân
Xem chi tiết
Huy Hoàng
28 tháng 4 2018 lúc 14:20

Ta có \(10\left(x-1\right)^{20}+20\left(y+2\right)^{10}=0\)

=> \(\hept{\begin{cases}10\left(x-1\right)^{20}=0\\20\left(y+2\right)^{10}=0\end{cases}}\)=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay x = 1 và y = -2 vào biểu thức \(2x^3+3y^2-14\), ta có:

\(2.1^3+3\left(-2\right)^2-14=2+12-14=0\)

Vậy giá trị của biểu thức \(2x^3+3y^2-14\)là 0 khi \(10\left(x-1\right)^{20}+20\left(y+2\right)^{10}=0\).

Nguyễn Xuân Khoa
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
hỏi đáp
13 tháng 3 2020 lúc 15:54

có |2x-5| luôn \(\ge0\forall x\in Q\)

cũng có \(\left|3y+1\right|\ge0\forall y\in Q\)

=> \(\left|2x-5\right|+\left|3y-1\right|\ge0\forall x;y\in Q\)

=>\(\hept{\begin{cases}2x-5=0\\3y-1=0\end{cases}}\)<=> \(\hept{\begin{cases}2x=5\\3y=1\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{3}\end{cases}}\) 

vậy \(x=\frac{2}{5};y=\frac{1}{3}\)

em nhớ là phải dùng ngoặc nhọn như trên nhé! Nếu không sẽ sai đấy!

3 câu còn lại cũng tương tự

Khách vãng lai đã xóa
Nguyễn Khánh Linh
13 tháng 3 2020 lúc 16:39

giúp mik câu cuối với các bạn

Khách vãng lai đã xóa
hỏi đáp
13 tháng 3 2020 lúc 16:44

với câu cuối ;Nguyễn Khánh Linh  em chỉ cần tìm x ;  biến đổi vế rồi lắp x vào để giải tiếp

khúc đầu tương tự bài đầu

=> \(\hept{\begin{cases}2x-5=0\\xy-3y+2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{5}{2}\\y\left(x-3\right)+2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{5}{2}\\y\left(\frac{2}{5}-3\right)+2=0\end{cases}}\)

em tự giải tiếp

Khách vãng lai đã xóa
no no
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2022 lúc 13:53

a: \(=4x^2-25-4x^2+12x-9-12x=-34\)

b: \(=8y^3-12y^2+6y-1-2y\left(4y^2-12y+9\right)-12y^2+12y\)

\(=8y^3-24y^2+18y-1-8y^3+24y^2-18y=-1\)

c: \(=x^3+27-x^3-20=7\)

d: \(=3y\left(9y^2+12y+4\right)-27y^3+1-36y^2-12y-1\)

\(=27y^3+36y^2+12y-27y^3-36y^2-12y\)

=0