tìm số hữu tỉ y biết
\(\left(3y-1\right)^{20}\)=\(\left(3y-1\right)^{10}\)
bài 2 : tìm số huu tỉ y biết:
\(\left(3y-1\right)^{10}=\left(3y-1\right)^{20}\)
bài 3:tìm x biết:
a.\(\left(x-5\right)^2=\left(1-3x\right)^2\)
bài 2 :
\(\left(3y-1\right)^{10}=\left(3y-1\right)^{20}\)
\(\Rightarrow\left(3y-1\right)^{20}-\left(3y-1\right)^{10}=0\)
\(\Rightarrow\left(3y-1\right)^{10}\left[\left(3y-1\right)^{10}-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(3y-1\right)^{10}=0\\\left(3y-1\right)^{10}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3y-1=0\\\left(3y-1\right)^{10}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3y=1\\3y-1=\pm1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=0\text{ }or\text{ }y=\frac{2}{3}\end{cases}}\)
BÀI 3
\(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Rightarrow\left(x-5\right)^2-\left(1-3x\right)^2=0\)
\(\Rightarrow\left(x-5-1+3x\right)\left(x-5+1-3x\right)=0\)
\(\Rightarrow\left(4x-6\right)\left(-2x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-6=0\\-2x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}}\)
Tìm các số hữu tỉ x,y,z biết: \(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}\le0\)
\(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}\le0\)
Ta có:
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2016}\ge0\\\left(3y+4\right)^{2018}\ge0\end{matrix}\right.\forall x.\)
\(\Rightarrow\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-5\right)^{2016}=0\\\left(3y+4\right)^{2016}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=0+5=5\\3y=0-4=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)
Chúc bạn học tốt!
cho x,y là số hữu tỉ thỏa mãn \(\left(x+y\right)^3=xy\left(3x+3y+2\right)\)
CMR: \(\sqrt{1-xy}\)là số hữu tỉ
Lời giải:
Ta có: \((x+y)^3=xy(3x+3y+2)\)
\(\Leftrightarrow x^3+y^3+3xy(x+y)=3xy(x+y)+2xy\)
\(\Leftrightarrow x^3+y^3=2xy\)
Nếu trong hai số $x,y$ tồn tại số bằng $0$ thì \(\sqrt{1-xy}=1\in\mathbb{Q}\)
Nếu cả hai số $x,y$ đều khác $0$
Chia cả hai vế cho $xy$ ta thu được:
\(\frac{x^2}{y}+\frac{y^2}{x}=2\)
\(\Leftrightarrow \left(\frac{x^2}{y}+\frac{y^2}{x}\right)^2=4\)
\(\Leftrightarrow \frac{x^4}{y^2}+\frac{y^4}{x^2}+2xy=4\)
\(\Leftrightarrow \frac{x^4}{y^2}+\frac{y^4}{x^2}-2xy=4-4xy\)
\(\Leftrightarrow \left(\frac{x^2}{y}-\frac{y^2}{x}\right)^2=4(1-xy)\)
\(\Leftrightarrow 1-xy=\left(\frac{x^2}{2y}-\frac{y^2}{2x}\right)^2\)
\(\Rightarrow \sqrt{1-xy}=|\frac{x^2}{2y}-\frac{y^2}{2x}|\in \mathbb{Q}\) do \(x,y\in\mathbb{Q}\)
Ta có đpcm.
Cho x và y là các số hữu tỉ thoa mãn đẳng thức \(\left(x+y\right)^3=xy\left(3x+3y+2\right)\)
Chứng minh rằng \(\sqrt{1-xy}\) là một số hữu tỉ
tính \(2x^3+3y^2-14\) biết giá trị của x, y thảo mãn: \(10\left(x-1\right)^{20}+20\left(y+2\right)^{10}=0\)
Ta có \(10\left(x-1\right)^{20}+20\left(y+2\right)^{10}=0\)
=> \(\hept{\begin{cases}10\left(x-1\right)^{20}=0\\20\left(y+2\right)^{10}=0\end{cases}}\)=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay x = 1 và y = -2 vào biểu thức \(2x^3+3y^2-14\), ta có:
\(2.1^3+3\left(-2\right)^2-14=2+12-14=0\)
Vậy giá trị của biểu thức \(2x^3+3y^2-14\)là 0 khi \(10\left(x-1\right)^{20}+20\left(y+2\right)^{10}=0\).
Cho x,y là các số hữu tỉ thỏa mãn đẳng thức \(\left(x+y\right)^38=xy\left(3x+3y+2\right)\)
cho \(x,y\in Q\) thỏa mãn \(\left(x+y\right)^3=xy\left(3x+3y+xy\right)\)
CMR \(\sqrt{1-\dfrac{1}{xy}}\) là số hữu tỉ
tìm x,y biết
\(\left|2x-5\right|+\left|3y+1\right|=0\)
\(\left|3x-4\right|+\left|3y-5\right|=0\)
\(|16-|x||+\left|5y-2\right|=0\)
\(\left|2x-5\right|+\left|xy-3y+2\right|=0\)
có |2x-5| luôn \(\ge0\forall x\in Q\)
cũng có \(\left|3y+1\right|\ge0\forall y\in Q\)
=> \(\left|2x-5\right|+\left|3y-1\right|\ge0\forall x;y\in Q\)
=>\(\hept{\begin{cases}2x-5=0\\3y-1=0\end{cases}}\)<=> \(\hept{\begin{cases}2x=5\\3y=1\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{3}\end{cases}}\)
vậy \(x=\frac{2}{5};y=\frac{1}{3}\)
em nhớ là phải dùng ngoặc nhọn như trên nhé! Nếu không sẽ sai đấy!
3 câu còn lại cũng tương tự
giúp mik câu cuối với các bạn
với câu cuối ;Nguyễn Khánh Linh em chỉ cần tìm x ; biến đổi vế rồi lắp x vào để giải tiếp
khúc đầu tương tự bài đầu
=> \(\hept{\begin{cases}2x-5=0\\xy-3y+2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{5}{2}\\y\left(x-3\right)+2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{5}{2}\\y\left(\frac{2}{5}-3\right)+2=0\end{cases}}\)
em tự giải tiếp
CM các biểu thức sau không phụ thuộc vào biến x,y
a) \(\left(2x-5\right)\times\left(2x+5\right)-\left(2x-3\right)^2-12x\)
b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)
c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)
d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)
a: \(=4x^2-25-4x^2+12x-9-12x=-34\)
b: \(=8y^3-12y^2+6y-1-2y\left(4y^2-12y+9\right)-12y^2+12y\)
\(=8y^3-24y^2+18y-1-8y^3+24y^2-18y=-1\)
c: \(=x^3+27-x^3-20=7\)
d: \(=3y\left(9y^2+12y+4\right)-27y^3+1-36y^2-12y-1\)
\(=27y^3+36y^2+12y-27y^3-36y^2-12y\)
=0