S=1+101+102+...+1020
TINH TONG
Tinh tong sau:
N=1^1+2^2+3^3+...+100^100. So sanh N voi 101^102.
a So Sánh : S = 1/101 + 1/102 + 1/103 + ... + 1/109 với 9/100
b Chứng tỏ S không phải là số tự nhiên biết : S = 1/101 + 1/102 + 1/103 + ... + 1/200
b) Ta có: \(\frac{1}{101}>0\)
\(\frac{1}{102}>0\)
...............,....
\(\frac{1}{200}>0\)
\(\Rightarrow S>0\left(1\right)\)
Lại có: \(\frac{1}{101}< \frac{1}{100}\)
\(\frac{1}{102}< \frac{1}{100}\)
......................
\(\frac{1}{200}< \frac{1}{100}\)
\(\Rightarrow S< \frac{1}{100}.100\)
\(\Rightarrow S< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow0< S< 1\)
Vậy S ko là số tự nhiên
a, ta có 1/101<1/100; 1/102<1/100;...;1/109<1/100
=> S=1/101+1/102+...+1/109< 1/100+1/100+...+1/100=9/100
=>S<9/100
b,ta thấy S luôn >0
S=1/101+1/102+...+1/200<1/100+1/100+...+1/100=1
=>S<1
=>0<S<1 => S không phải số tự nhiên
\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};\frac{1}{103}< \frac{1}{100};......;\frac{1}{109}< \frac{1}{100}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{109}< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\)
\(\Rightarrow S< 9\cdot\frac{1}{100}\)
\(\Rightarrow S< \frac{9}{100}\)
Vậy \(S< \frac{9}{100}\)
Bài 5 :
a So sánh S = 1/101 + 1/102 + 1/103 + .... + 1/109 với 9/100
b Chứng tỏ S không là số tự nhiên biết : S = 1/101 + 1/102 + 1/103 + ... + 1/109
Có:\(\frac{1}{101}< \frac{1}{100}\)
\(\frac{1}{102}< \frac{1}{100}\)
........................
\(\frac{1}{109}< \frac{1}{100}\)
=>\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{109}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
(9 phân số)
\(=>\frac{1}{101}+\frac{1}{102}+...+\frac{1}{109}< \frac{9}{100}\)
Cho A = 1/101 + 1/102 + 1/103 + ... + 1/200
1/ So sánh 1/101 với 1/102 ; ... ; 1/101 với 1/200
2/ Chứng minh: A <1
Giúp mình đi mà :v
Chưa hiểu lắm đề câu 1 :v thôi làm tạm câu 2 nhé (sửa lại đề câu 1 đi -_-)
Ta có : $\dfrac{1}{101}<\dfrac{1}{100};\dfrac{1}{102}<\dfrac{1}{100};...;\dfrac{1}{200}<\dfrac{1}{100}$
Vì A có 100 phân số : $(200-101):1+1=100$
$=>A<\dfrac{1}{100}.100=1$
1/ \(\dfrac{1}{101}>\dfrac{1}{102};...;\dfrac{1}{101}>\dfrac{1}{200}\)
2/ Ta có: \(\left\{{}\begin{matrix}\dfrac{1}{101}< \dfrac{1}{100}\\...\\\dfrac{1}{200}< \dfrac{1}{100}\end{matrix}\right.\Rightarrow A=\dfrac{1}{101}+...+\dfrac{1}{200}< \dfrac{1}{100}+...+\dfrac{1}{100}\)
( 100 phân số \(\dfrac{1}{100}\) )
\(\Rightarrow A< \dfrac{1}{100}.100=1\)
\(\Rightarrowđpcm\)
s= 1/101 + 1/102 +... 1/130 chứng minh rằng 1/4<s<91/330
Chứng minh \(S< \dfrac{91}{330}\)
\(S=\left(\dfrac{1}{101}+\dfrac{1}{102}+.....+\dfrac{1}{110}\right)+\left(\dfrac{1}{111}+....+\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+......+\dfrac{1}{130}\right)\)
\(S< \left(\dfrac{1}{100}+\dfrac{1}{100}......+\dfrac{1}{100}\right)+\left(\dfrac{1}{110}+....+\dfrac{1}{110}\right)+\left(\dfrac{1}{120}+....+\dfrac{1}{120}\right)\)
\(S< \dfrac{66+60+65}{660}\)
\(S< \dfrac{181}{660}< \dfrac{182}{660}\)
+ Hay \(S< \dfrac{91}{330}\left(1\right)\)
Chứng minh \(\dfrac{1}{4}< S\)
\(S>\left(\dfrac{1}{110}\right)+.....+\left(\dfrac{1}{110}\right)+\left(\dfrac{1}{120}\right)+.....+\left(\dfrac{1}{120}\right)+\left(\dfrac{1}{130}\right)+......+\left(\dfrac{1}{130}\right)\)
\(S>\dfrac{1}{110}.10+\dfrac{1}{120}.10+\dfrac{1}{130}.10=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}\)
\(S>\dfrac{156+143+132}{1716}\)
+ Hay \(S>\dfrac{1}{4}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{1}{4}< S< \dfrac{91}{330}\)
cho S=1/101+1/102+1/103+...1/200.chứng minh rằng 1/2<S<1
S=1/101+1/102+...+1/200
=>S>1/200+1/200+...+1/200=100/200=1/2
S=1/101+1/102+...+1/200
=>S<1/100+1/100+...+1/100=100/100=1
=>1/2<S<1
cho S=1/101+1/102+1/103+...1/200.chứng minh rằng 1/2<S<1
Ta có: S=1/101 > 1/200
1/102 > 1/200
1/103 > 1/200
........
1/199 > 1/200
1/200 = 1/200
=>1/101 +1/102 +1/103 +.... +1/199 +1/200 > 1/200 + 1/200 +1/200 +..... +1/200
=>1/101 + 1/102 +1/103 +..... +1/200 > 1/200x100 = 1/2
Vậy biểu thức đã cho S > 1/2
S=1/101+1/102+...+1/130.Chứng minh rằng S<91/330
Cho S=1/101+1/102+...+1/130. Chứng minh S<91/330
tinh tong
C=1012+1022+...+1992+2002