S=1/101+1/102+...+1/200
=>S>1/200+1/200+...+1/200=100/200=1/2
S=1/101+1/102+...+1/200
=>S<1/100+1/100+...+1/100=100/100=1
=>1/2<S<1
S=1/101+1/102+...+1/200
=>S>1/200+1/200+...+1/200=100/200=1/2
S=1/101+1/102+...+1/200
=>S<1/100+1/100+...+1/100=100/100=1
=>1/2<S<1
cho S=1/101+1/102+1/103+...1/200.chứng minh rằng 1/2<S<1
S=1/101+1/102+1/103+...+1/200. Chứng minh: S > 7/12
S=1/101+1/102+1/103+...+1/200. Chứng minh S>7/12
chứng minh s= 1/101+ 1/102+ 1/103+ ...+ 1/200 không phải là số nguyên
Cho biết S= 1/101+1/102+1/103+...+1/130. Chứng minh rằng 1/4< S <91/330
a So Sánh : S = 1/101 + 1/102 + 1/103 + ... + 1/109 với 9/100
b Chứng tỏ S không phải là số tự nhiên biết : S = 1/101 + 1/102 + 1/103 + ... + 1/200
a) S=1+1/3+1/6+1/10+...+1/45. So sánh S với 2
b) A=1/101+1/102+1/103+...+1/199+1/200. Chứng tỏ rằng A lớn hơn 7/12
a) S=1+1/3+1/6+1/10+...+1/45. So sánh S với 2
b) A=1/101+1/102+1/103+...+1/199+1/200. Chứng tỏ rằng A lớn hơn 7/12
Chứng minh rằng :
a) 7/12 <1/101+1/102+1/103+...+1/200 <1
b) 1/101+1/102+1/103+...+1/150>1/3