Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 18:02

Thực hiện lần lượt BĐT cô-si 3 số cho từng bộ 3 vế trái, ví dụ:

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\ge3\sqrt[3]{\dfrac{1}{a^3b^3c^3}}=\dfrac{3}{abc}\)

Làm tương tự, sau đó cộng vế và quy đồng vế phải là sẽ được BĐT cần chứng minh

Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2022 lúc 13:00

\(\Leftrightarrow\dfrac{2bc}{2bc+a^2}+\dfrac{2ac}{2ac+b^2}+\dfrac{2ab}{2ab+c^2}\le2\)

\(\Leftrightarrow\dfrac{2bc}{2bc+a^2}-1+\dfrac{2ac}{2ac+b^2}-1+\dfrac{2ab}{2ab+c^2}-1\le2-3\)

\(\Leftrightarrow\dfrac{a^2}{2bc+a^2}+\dfrac{b^2}{2ac+b^2}+\dfrac{c^2}{2ab+c^2}\ge1\)

BĐT trên đúng theo C-S:

\(\dfrac{a^2}{2bc+a^2}+\dfrac{b^2}{2ac+b^2}+\dfrac{c^2}{2ab+c^2}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)

Dấu "=" xảy ra khi \(a=b=c\)

Nguyễn Ngọc Bảo Hân
Xem chi tiết
Member lỗi thời :>>...
26 tháng 9 2021 lúc 9:46

CÁc số tròn chục nhỏ hơn 90 là :

10 ; 20 ; 30 ; 40 ; 50 ; 60 ; 70 ; 80

Tổng của các số tròn chục nhỏ hơn 90 là :

10 + 20 + ... + 80 = ( 80 + 10 ) x 8 : 2

= 90 x 8 : 2 = 720 : 2 = 360

Khách vãng lai đã xóa
Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 3 2022 lúc 15:42

\(P=n^3+7n^2+25n+39=\left(n+3\right)\left(n^2+4n+13\right)\)

 Hiển nhiên \(\left\{{}\begin{matrix}n+3>1\\n^2+4n+13>1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}n+3=p^a\\n^2+4n+13=p^b\end{matrix}\right.\) với \(b>a>0\)

\(\Rightarrow\left\{{}\begin{matrix}n+3⋮p\\n^2+4n+13⋮p\end{matrix}\right.\) \(\Rightarrow n^2+4n+13-\left(n+3\right)\left(n+1\right)⋮p\)

\(\Rightarrow10⋮p\Rightarrow\left[{}\begin{matrix}p=2\\p=5\end{matrix}\right.\)

- TH1: \(p=2\Rightarrow n+3=2^a\)

Do n nguyên dương \(\Rightarrow n+3\ge4\Rightarrow a\ge2\Rightarrow2^a⋮4\)

\(\Rightarrow n+3⋮4\Rightarrow n=4k+1\)

Đồng thời \(n^2+4n+13=2^b\), hiển nhiên \(b>2\Rightarrow n^2+4n+13⋮4\)

\(\Rightarrow\left(4k+1\right)^2+4\left(4k+1\right)+13⋮4\)

\(\Rightarrow4k\left(4k+6\right)+18⋮4\) (vô lý) 

\(\Rightarrow p=2\) không thỏa mãn

TH2: \(p=5\) \(\Rightarrow\left\{{}\begin{matrix}n+3=5^a\\n^2+4n+13=5^b\end{matrix}\right.\)  

\(\Rightarrow\left(n+1\right)\left(n+3\right)+10=5^b\)

\(\Rightarrow5^a\left(5^a-2\right)+10=5^b\)

\(\Rightarrow5^{a-1}\left(5^a-2\right)+2=5^{b-1}\)

- Với \(a=1\Rightarrow b=2\)

- Với \(a>1\Rightarrow\) vế trái chia 5 dư 2, vế phải chia hết cho 5

\(\Rightarrow\) Không tồn tại a;b nguyên thỏa mãn

Vậy \(a=1\Rightarrow n=5^1-3=2\)

Phạm Kim Oanh
Xem chi tiết
missing you =
7 tháng 3 2022 lúc 17:29

\(S=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)

\(S=\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{c}=a\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+b\left(\dfrac{1}{a}+\dfrac{1}{c}\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge a.\dfrac{4}{b+c}+b.\dfrac{4}{a+c}+c.\dfrac{4}{a+b}=4\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\)

Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 4 2022 lúc 17:22

Nếu p;q;r đều lẻ hoặc có đúng 1 số trong 3 số là lẻ \(\Rightarrow p^2+q^2+r^2\) lẻ, trong khi 5054 chẵn (ktm)

\(\Rightarrow\) Cả p;q;r đều chẵn (loại do \(2^2+2^2+2^2< 5054\)) hoặc có đúng 1 số trong 3 số là chẵn

Do vai trò 3 số như nhau, ko mất tính tổng quát, giả sử r chẵn \(\Rightarrow r=2\)

\(\Rightarrow p^2+q^2=5050\)

Nếu p; q đều chia hết cho 3 \(\Rightarrow p=q=3\Rightarrow ktm\)

Nếu p;q đều ko chia hết cho 3 \(\Rightarrow p^2\) và \(q^2\) đều chia 3 dư 1

\(\Rightarrow p^2+q^2\) chia 3 dư 2 trong khi \(5050\) chia 3 dư 1 (ktm)

\(\Rightarrow\) Có đúng 1 số trong p; q chia hết cho 3, ko mất tính tổng quát, giả sử là p \(\Rightarrow p=3\)

\(\Rightarrow q^2=5050-9=5041\Rightarrow q=71\) là SNT (thỏa mãn)

Vậy bộ 3 số nguyên tố thỏa mãn là \(\left(2;3;71\right)\) và các hoán vị

Xyz OLM
5 tháng 4 2022 lúc 17:46

Vì tổng của p2 + q2 + r2 \(⋮2\)

=> \(\left[{}\begin{matrix}p⋮2\\q⋮2\\r⋮2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}p=2\\q=2\\r=2\end{matrix}\right.\)

Giả sử r = 2 => p2 + q2 = 5050 ; p;q lẻ 

=> Chữ số tận cùng p2 chỉ có thể là 9;1

=> Chư số tận cùng p là 1;3;7;9

mà p2 + q2 = 5050 => q2 \(< 5050\) ; p2 < 5050

<=> q < 72 (1) ; p < 72 (2) 

Lại có p2 + q2 = 5050

<=> 2pq = 5050 - (p - q)2 < 5050

<=> pq \(< 2525\) (3)

Từ (1) ; (3) => p >  35 (4)

Từ (2) ; (4) => 35 < p < 72

<=> p \(\in\left\{37;41;43;47;53;59;61;67;71\right\}\)

Thử từng giá trị p => tìm được p = 71 thỏa mán 

thay vào pt gốc được q = 3 (tm)

Vậy các cặp (p;q;r) thỏa là (71;3;2) và các hoán vị 

 

 

Hồ Nhật Phi
5 tháng 4 2022 lúc 17:51

Giả sử p<q<r.

Số 2 là số nguyên tố chẵn duy nhất.

Số lẻ có dạng 2k+1 (k\(\in\)N), bình phương của số lẻ là (2k+1)2=4k2+4k+1 là một số lẻ.

Mà p2+q2+r2 là một số chẵn (=5054), suy ra p=2.

q2+r2=5050 \(\Rightarrow\) q2<2525 \(\Rightarrow\) 3\(\le\)q<50.

Với q=3 \(\Rightarrow\) r=71 (nhận).

Vậy ba số nguyên tố cần tìm là 2, 3 và 71.

Phạm Kim Oanh
Xem chi tiết
Xyz OLM
5 tháng 4 2022 lúc 18:20

Với p = 2 => 8p2  +1 = 33 (loại)

Với p = 3 => 8p2 + 1 = 73 (tm)

Với p > 3 => Đặt p = 3k + 1 ; p = 3k + 2 (k \(\in Z^+\)

Với p = 3k + 1 => 8p2 + 1 = 8(3k + 1)2 + 1 

= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)(loại)

Với p = 3k + 2 => 8p2 + 1 = 8(3k + 2)2 + 1 

= 72k2 + 96k + 33 = 3(24k2 + 32k + 11) \(⋮3\)(loại)

Vậy p = 3 thì 8p2 + 1 \(\in P\)

Nguyễn Việt Lâm
5 tháng 4 2022 lúc 18:20

- Với \(p=2\) ko thỏa mãn

- Với \(p=3\Rightarrow8p^2+1=73\) là số nguyên tố (thỏa mãn)

- Với \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)

\(\Rightarrow p^2=3k+1\)

\(\Rightarrow8p^2+1=8\left(3k+1\right)+1=24k+9=3\left(8k+3\right)\) là số lớn hơn 3 và chia hết cho 3

\(\Rightarrow8p^2+1\) là hợp số (ktm)

Vậy \(p=3\) là SNT duy nhất thỏa mãn yêu cầu

Nguyễn Trang
Xem chi tiết
Nguyễn Trọng Chiến
19 tháng 2 2021 lúc 16:46

Với n=0 \(\Rightarrow\) phương trình có 2 nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)

Với n \(\ne0\)

Để phương trình có nghiệm duy nhất \(\Leftrightarrow\dfrac{n}{2}\ne\dfrac{2}{n}\Rightarrow n^2\ne4\Rightarrow n\ne\pm2\)

Vậy hệ phương trình có nghiệm duy nhất \(\forall n\ne\pm2\)

Phạm Kim Oanh
Xem chi tiết
Bùi Đức Huy Hoàng
10 tháng 4 2022 lúc 13:01

lập phương hay chính phương thế bạn???

Bùi Đức Huy Hoàng
10 tháng 4 2022 lúc 13:30

nếu là chính phương thì ntn nha 

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

đặt \(t=n^2+3n\left(t\in Z^+\right)\)

phương trình thành:
\(t\left(t+2\right)=t^2+2t\)

vì \(t^2< t^2+2t< t^2+2t+1\)

hay \(t^2< t^2+2t< \left(t+1\right)^2\)

=> \(t^2+2t\) không thể là số chính phương

=>\(n\left(n+2\right)\left(n+2\right)\left(n+3\right)\) luôn luôn không thể là số chính phương

Phạm Kim Oanh là con chó
12 tháng 4 2022 lúc 18:19

cô ơi, cô là người hay cô là chó vậy ạ ?, bài tập thầy con soạn bao nhiêu công sức cô ăn cắp như con chó không thèm ghi nguồn rồi đăng lên đây, thầy con đã nói rồi mà cô vẫn cố tình nhai đi nhai lại mấy tháng nay, bẩn không bằng con chó cô ạ, cô làm như vậy là báo hại đến học sinh bọn con thôi ạ, cô làm ơn bỏ cái trò đó đi ạ