tìm x để biểu thức sau có nghĩa
a, \(\sqrt{2-4x}\)
b, \(\sqrt{4\left(x-5\right)}\)
tìm x để các biểu thức sau có nghĩa:
a)\(\sqrt{\left(x-2\right)}\)+\(\dfrac{1}{x-5}\) b)\(\sqrt{\left(2x-6\right)\left(7-x\right)}\) c)\(\sqrt{4x^2-25}\)
d)\(\dfrac{2}{x^2-9}\)-\(\sqrt{5-2x}\) e)\(\dfrac{x}{x^2-4}\)+\(\sqrt{x-2}\)
a) \(\sqrt{x-2}+\dfrac{1}{x-5}\) có nghĩa khi:
\(\left\{{}\begin{matrix}x-2\ge0\\x-5\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)
b) \(\sqrt{\left(2x-6\right)\left(7-x\right)}=\sqrt{2\left(x-3\right)\left(7-x\right)}\) có nghĩa khi:
\(\left(x-3\right)\left(7-x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\7-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\7-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge3\\x\le7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le3\\x\ge7\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow3\le x\le7\)
c) \(\sqrt{4x^2-25}=\sqrt{\left(2x-5\right)\left(2x+5\right)}\) có nghĩa khi:
\(\left(2x-5\right)\left(2x+5\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5\ge0\\2x+5\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5\le0\\2x+5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x\ge-\dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{2}\\x\le-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{2}\\x\le-\dfrac{5}{2}\end{matrix}\right.\)
d) \(\dfrac{2}{x^2-9}-\sqrt{5-2x}=\dfrac{2}{\left(x+3\right)\left(x-3\right)}-\sqrt{5-2x}\) có nghĩa khi:
\(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\5-2x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\le\dfrac{5}{2}\end{matrix}\right.\)
e) \(\dfrac{x}{x^2-4}+\sqrt{x-2}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}+\sqrt{x-2}\) có nghĩa khi:
\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x-2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm2\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow x>2\)
a,\(\sqrt{5-4x}\)
b,\(\sqrt{\left(x+1\right)^2}\)
c,\(\sqrt{\dfrac{-1}{x-2}}\)
giúp mình tìm điều kiện để tìm các căn thức sau có nghĩa
a: ĐKXĐ: 5-4x>=0
=>x<=5/4
b: ĐKXĐ: x thuộc R
c: ĐKXĐ: x-2<0
=>x<2
\(a,ĐK:5-4x\ge0\\ \Rightarrow x\le\dfrac{5}{4}\\ b,ĐK:\left(x+1\right)^2\ge0\left(lđ\right)\)
\(\Rightarrow\) Với mọt giá trị của x
\(c,ĐK:\dfrac{-1}{x-2}\ge0\)
Vì \(-1< 0\)
\(\Rightarrow x-2< 0\)
\(\Rightarrow x< 2\)
a)
Căn thức có nghĩa thì:
\(5-4x\ge0\\ \Leftrightarrow4x\le5\\ \Rightarrow x\le\dfrac{5}{4}\)
b)
Để căn thức có nghĩa thì:
\(\left(x+1\right)^2\ge0\) (luôn đúng)
Vậy căn thức có nghĩa với mọi giá trị x.
c)
Để căn thức có nghĩa thì:
\(\left\{{}\begin{matrix}-\dfrac{1}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x\ne2\end{matrix}\right.\\ \Rightarrow x< 2\)
Cho biểu thức M=\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}}{\sqrt{2}+2}\right).\frac{x-4}{\sqrt{4x}}\)
a) Tìm điều kiện của x để biểu thức có nghĩa.
b) Rút gọn biểu thức M.
c)Tìm x để M > 3.
\(=\left(\frac{\sqrt{x}\left(\sqrt{2}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\left(\frac{\sqrt{2\text{x}}+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\frac{\sqrt{2\text{x}}+x}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\frac{\sqrt{2\text{x}}+x}{\sqrt{2}+2}.\frac{\sqrt{x}-2}{\sqrt{4\text{x}}}\)
\(=\frac{x\sqrt{2}-2\sqrt{2\text{x}}+x\sqrt{x}-2\text{x}}{2\sqrt{2\text{x}}+4\sqrt{x}}\)
tick cho mình nha
1 Cho biểu thức B=\(\frac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a) Tìm x để A có nghĩa, từ đó rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để biểu thức B nhận giá trị nguyên
2 cho biểu thức P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right)\div\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm giá trị của x để P=-1
3 Rút gọn Q=\(\frac{2\sqrt{4-\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
Cho biểu thức: \(A=\left(\frac{x-2\sqrt{3x}+3}{x-3}\right).\left(\sqrt{4x}+\sqrt{12}\right)\)
a) Tìm điều kiện của x để biểu thức A có nghĩa
b) Rút gọn biểu thức A
c) Tính giá trị của A khi \(x=4-2\sqrt{3}\)
cho biểu thức A = \(\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right)\)
a ) tìm điều kiện của x để biểu thức A có nghĩa
b) rút gọn biểu thức A
c) tính giá trị của A khi x = \(4-2\sqrt{3}\)
a) \(ĐKXĐ:x\ge0;x\ne3\)
b) \(A=\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right)\)
\(\Leftrightarrow A=\left(\frac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)}\right)\left(2\sqrt{x}+2\sqrt{3}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}-\sqrt{3}}{\sqrt{x}+\sqrt{3}}\right).2\left(\sqrt{x}+\sqrt{3}\right)\)
\(\Leftrightarrow A=2\left(\sqrt{x}-\sqrt{3}\right)\)
\(\Leftrightarrow A=2\sqrt{x}-2\sqrt{3}\)
c) Thay \(x=4-2\sqrt{3}\)vào A, ta có :
\(A=2\sqrt{4-2\sqrt{3}}-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{\left(1-\sqrt{3}\right)^2}-2\sqrt{3}\)
\(\Leftrightarrow A=2\left(\sqrt{3}-1\right)-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{3}-2-2\sqrt{3}\)
\(\Leftrightarrow A=-2\)
Tìm điều kiện để các biểu thức sau có nghĩa
a, \(\sqrt{x-2}-\sqrt{4-x}\)
b, \(\dfrac{1}{\sqrt{x+1}-1}\)
c, \(\sqrt{x^2-4x+3}\)
d, \(\sqrt{-x^5}\)
e, \(\sqrt{\dfrac{x-3}{2-x}}\)
g, \(\sqrt{-\left|x-2\right|}\)
h, \(\sqrt{4x^2-4x+1}\)
Mình đang cần gấp, sắp phải nộp rồi
\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\)
a) tìm điều kiện của x để biểu thức có nghĩa
b) rút gọn biểu thức M
a) ĐKXĐ:
\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\\rightarrow \left\{{}\begin{matrix}x>\sqrt{2}\\x>-\sqrt{2}\\x>0\end{matrix}\right.\\ \rightarrow x>\sqrt{2}\)
Vậy \(x>\sqrt{2}\)
b)
\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\\ =\left[\dfrac{\sqrt{x}.\left(\sqrt{x}+2\right)+\sqrt{x}.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{2\sqrt{x}}=\dfrac{x}{\sqrt{x}}=\dfrac{\sqrt{x}.\sqrt{x}}{\sqrt{x}}=\sqrt{x}\)
Vậy \(M=\sqrt{x}\)
a) ĐKXĐ:
\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}x>4\\x>-4\\x>0\end{matrix}\right.\\ \rightarrow x>4\)
Vậy \(x>4\)
Tìm ĐKXĐ để biểu thức sau có nghĩa
a, \(\sqrt{\left(x+3\right)\left(2-x\right)}\)
b, \(\sqrt{x^2-5x+4}\)