Tính giá trị của biểu thức:
\(E=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\) với x + y = 1
tính giá trị của biểu thức:
\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\) với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)
\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{a\left(-x-y\right)+b\left(-x-y\right)-a\left(b-x\right)+y\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{-ax-ay-bx-by-ab+ax+by-xy}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{-ay-bx-ab-xy}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{-xy+ay+ab+by}{abxy\left(xy+ay+ab+by\right)}=\dfrac{-1}{abxy}\)
Với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)
\(\Rightarrow A=\dfrac{-1}{\dfrac{1}{3}.\left(-2\right).\dfrac{3}{2}.1}=-1\)
Tính giá trị của biểu thức sau:
c) \(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\) tại \(x+y+1=0\)
\(x+y+1=0\\ \Leftrightarrow x+y=-1\)
Thay x+y=-1 vào C ta có:
\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(\Rightarrow C=x^2\left(-1\right)-y^2\left(-1\right)+x^2-y^2+2\left(-1\right)+3\)
\(\Rightarrow C=-x^2+y^2+x^2-y^2-2+3\)
\(\Rightarrow C=\left(-x^2+x^2\right)+\left(y^2-y^2\right)+\left(3-2\right)\)
\(\Rightarrow C=0+0+1\)
\(\Rightarrow C=1\)
\(x+y+1=0\) =>\(x+y=-1\)
- Thay \(x+y=-1\) vào C ta được:
\(C=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(=-x^2+y^2+x^2-y^2-2+3\)=1
Sao bạn doanh doanh nhắn chữ "hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh" quài vậy ?
câu 1. Tìm giá trị nhỏ nhất của biểu thức
a) \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
b) \(B=x^2-4x+y^2-8y+6\)
câu 2. Tính giá trị của biểu thức sau: \(T=2\left(x^3+y^3\right)-3\left(x^2+v^2\right)\)với x+y=1
giúp mị với mí bn ơi
a, A = (x-1)(x+6) (x+2)(x+3)
= (x^2 + 5x -6 ) (x^2 + 5x + 6)
Đặt t = x^2 +5x
A= (t-6)(t+6)
= t^2 - 36
GTNN của A là -36 khi và ck t= 0
<=> x^2 +5x = 0
<=> x=0 hoặc x=-5
Vậy...
1) Rút gọn biểu thức
\(\left(x+3\right)^3-\left(x-3\right)^3+3x\left(x-2\right)\)
2) Tính giá trị biểu thức
\(C=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)VỚI x-y = 2
Cho x-y = 2, tính giá trị của biểu thức
A = \(2\left(x^3-y^3\right)-3\left(x+y\right)^2\)
\(A=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)
\(A=2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]-3\left[\left(x-y\right)^2+4xy\right]\)
\(A=2\left[2^3+3xy.2\right]-3\left[2^2+4xy\right]\)
\(A=2\left[28+6xy\right]-3\left[4+4xy\right]\)
\(A=56+12xy-12-12xy=56-12=44\)
Với x+y=1, tính giá trị của biểu thức:
\(A=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)+30\)
BT6: Tính giá trị của biểu thức
\(3,C=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)tại\(x=\dfrac{1}{2},y=-1\)
\(4,D=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)tại\(x=\dfrac{1}{2},y=-100\)
\(3,x=\dfrac{1}{2},y=-1\)
\(\Rightarrow C=\dfrac{1}{2}\left[\left(\dfrac{1}{2}\right)^2+1\right]-\left(\dfrac{1}{2}\right)^2\left(\dfrac{1}{2}-1\right)-1\left[\left(\dfrac{1}{2}\right)^2-\dfrac{1}{2}\right]\)
\(\Rightarrow C=\dfrac{1}{2}\left(\dfrac{1}{4}+1\right)-\dfrac{1}{4}\left(-\dfrac{1}{2}\right)-\left(\dfrac{1}{4}-\dfrac{1}{2}\right)\)
\(\Rightarrow C=\dfrac{1}{2}.\dfrac{5}{4}+\dfrac{1}{8}-\left(-\dfrac{1}{4}\right)\)
\(\Rightarrow C=\dfrac{5}{8}+\dfrac{1}{8}+\dfrac{1}{4}\)
\(\Rightarrow C=1\)
\(4,x=\dfrac{1}{2},y=-100\)
\(\Rightarrow D=\dfrac{1}{2}\left[\left(\dfrac{1}{2}\right)^2+100\right]-\left(\dfrac{1}{2}\right)^2\left(\dfrac{1}{2}-100\right)-100\left[\left(\dfrac{1}{2}\right)^2-\dfrac{1}{2}\right]\)
\(\Rightarrow D=\dfrac{1}{2}\left(\dfrac{1}{4}+100\right)-\dfrac{1}{4}\left(-\dfrac{199}{2}\right)-100\left(\dfrac{1}{4}-\dfrac{1}{2}\right)\)
\(\Rightarrow D=\dfrac{1}{2}.\dfrac{401}{4}+\dfrac{199}{8}-100.\left(-\dfrac{1}{4}\right)\)
\(\Rightarrow D=\dfrac{401}{8}+\dfrac{199}{8}+25\)
\(\Rightarrow D=100\)
3: C=x^3-xy-x^3-x^2y+x^2y-xy
=-2xy=-2*1/2*(-1)=1
4: D=x^3-xy-x^3-x^2y+x^2y-xy
=-2xy
=-2*1/2*(-100)=100
Cho biểu thức:
\(P=\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+\frac{3}{4}\left(y+\frac{1}{3}\right)+x^2y^2}{\left(x^2-y\right)\left(1-y\right)+x^2y^2+1}\)
a) Rút gọn P
b) Tính giá trị của biểu thức P với các số nguyên dương x;y thỏa mãn: 1! + 2! +...+ x! = y2
Cho: x + y = 1. Tính giá trị của biểu thức: \(B=3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)
\(x^2+y^2=\left(x+y\right)^2-2xy=1-2xy\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1-3xy\)
\(B=3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)
\(=3\left(1-2xy\right)-2\left(1-3xy\right)\)
\(=3-6xy-2+6xy\)
\(=1\)