rút gọn biểu thức
A=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}\)+\(\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
1. Rút gọn biểu thức
A=\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
2. Giải phương trình
a) \(\sqrt{x+2\sqrt{3x-9}}+\sqrt{x-2\sqrt{3x-9}}=2\sqrt{3}\)
2:
ĐKXĐ: x>=3
\(\Leftrightarrow\sqrt{x-3+2\cdot\sqrt{x-3}\cdot\sqrt{3}+3}+\sqrt{x-3-2\cdot\sqrt{x-3}\cdot\sqrt{3}+3}=2\sqrt{3}\)
=>\(\left|\sqrt{x-3}+\sqrt{3}\right|+\left|\sqrt{x-3}-\sqrt{3}\right|=2\sqrt{3}\)
\(\Leftrightarrow\sqrt{x-3}+\sqrt{3}+\left|\sqrt{x-3}-\sqrt{3}\right|=2\sqrt{3}\)
\(\Leftrightarrow\sqrt{x-3}+\left|\sqrt{x-3}-\sqrt{3}\right|=\sqrt{3}\)(1)
TH1: x>=6
(1) trở thành \(\sqrt{x-3}+\sqrt{x-3}-\sqrt{3}=\sqrt{3}\)
=>\(2\sqrt{x-3}=2\sqrt{3}\)
=>x-3=3
=>x=6(nhận)
TH2: 3<=x<6
Phương trình (1) sẽ là;
\(\sqrt{x-3}+\sqrt{3}-\sqrt{x-3}=\sqrt{3}\)
=>\(\sqrt{3}=\sqrt{3}\)(luôn đúng)
1:
\(A^2=8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{8^2-\left(2\sqrt{10+2\sqrt{5}}\right)^2}\)
\(=16+2\cdot\sqrt{64-4\cdot\left(10+2\sqrt{5}\right)}\)
\(=16+2\cdot\sqrt{24-8\sqrt{5}}\)
\(=16+2\cdot\sqrt{20-2\cdot2\sqrt{5}\cdot2+4}\)
\(=16+2\cdot\sqrt{\left(2\sqrt{5}-2\right)^2}\)
\(=16+2\cdot\left(2\sqrt{5}-2\right)=12+4\sqrt{5}\)
\(=10+2\cdot\sqrt{10}\cdot\sqrt{2}+2\)
\(=\left(\sqrt{10}+\sqrt{2}\right)^2\)
=>\(A=\sqrt{10}+\sqrt{2}\)
Rút gọn biểu thức : \(\sqrt{4+\sqrt{10+2\sqrt{5}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}}\)
Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Leftrightarrow A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(\Leftrightarrow A^2=8+2\sqrt{16-10-2\sqrt{5}}\\ \Leftrightarrow A^2=8+2\sqrt{6-2\sqrt{5}}\\ \Leftrightarrow A^2=8+2\left(\sqrt{5}-1\right)\\ \Leftrightarrow A^2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\\ \Leftrightarrow A=\sqrt{5}+1\)
Vậy \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=\sqrt{5}+1\)
Rút gọn biểu thức
a)\(\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{6}+\sqrt{2}}+\dfrac{3}{\sqrt{6}+\sqrt{5}}\)
b)\(\dfrac{3}{\sqrt{5}-\sqrt{2}}-\dfrac{1}{\sqrt{5-\sqrt{24}}}-\dfrac{\sqrt{2}}{\sqrt{4+\sqrt{15}}}\)
Help me plsssssssssssssss
\(a,=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{6-2}+\dfrac{3.\left(\sqrt{6}-\sqrt{5}\right)}{6-5}\\ =\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}+3\left(\sqrt{6}-\sqrt{5}\right)\\ =\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}+3\sqrt{6}-3\sqrt{5}\\ =4\sqrt{6}-2\sqrt{5}\)
\(b,=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}-\dfrac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\sqrt{4+\sqrt{15}}}\\ =\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}-\dfrac{1}{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}-\dfrac{2}{\sqrt{8+2.\sqrt{3}.\sqrt{5}}}\\ =\sqrt{5}+\sqrt{2}-\dfrac{1}{\left|\sqrt{3}-\sqrt{2}\right|}-\dfrac{2}{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}\\ =\sqrt{5}+\sqrt{2}-\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\left|\sqrt{5}+\sqrt{3}\right|}\)
\(=\sqrt{5}+\sqrt{2}-\dfrac{\sqrt{3}+\sqrt{2}}{3-2}-\dfrac{2.\left(\sqrt{5}-\sqrt{3}\right)}{5-3}\\ =\sqrt{5}+\sqrt{2}-\sqrt{3}-\sqrt{2}-\dfrac{2.\left(\sqrt{5}-\sqrt{3}\right)}{2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{3}-\sqrt{2}-\sqrt{5}+\sqrt{3}\\ =0\)
a: \(=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}+\dfrac{3\left(\sqrt{6}-\sqrt{5}\right)}{1}\)
\(=\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}+3\sqrt{6}-3\sqrt{5}\)
\(=-2\sqrt{5}+4\sqrt{6}\)
b: \(=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}+\dfrac{2}{\sqrt{8+2\sqrt{15}}}\)
\(=\sqrt{5}+\sqrt{2}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\)
\(=\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{2}\)
=2căn 5-2căn 3
rút gọn biểu thức
A=2\(\sqrt{27}\)+5\(\sqrt{12}\)-3\(\sqrt{48}\)
B=\(\sqrt{147}\)+\(\sqrt{75}\)-4\(\sqrt{27}\)
C=3\(\sqrt{2}\)(4-\(\sqrt{2}\))+3(1-2\(\sqrt{2}\))2
D=2\(\sqrt{5}\)-\(\sqrt{125}\)-\(\sqrt{80}\)+\(\sqrt{605}\)
a: \(A=6\sqrt{3}+10\sqrt{3}-12\sqrt{3}=4\sqrt{3}\)
b: \(B=7\sqrt{3}+5\sqrt{3}-12\sqrt{3}=0\)
c: \(=12\sqrt{2}-6+3\left(9-4\sqrt{2}\right)=12\sqrt{2}-6+27-12\sqrt{2}=21\)
d: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)
* Rút gọn biểu thức
a. \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
b. \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}\)
c. \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)
d. \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(a,=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)
\(=\sqrt{2}\left(3-12+8-5\right)=-6\sqrt{2}\)
\(b,=\left|\sqrt{2}-\sqrt{3}\right|+3\sqrt{2}=\sqrt{3}-\sqrt{2}+3\sqrt{2}=\sqrt{3}+2\sqrt{2}\)
\(c,=\sqrt{5}+\sqrt{5}+\dfrac{5}{\sqrt{5}}-1=3\sqrt{5}-1\)
\(d,=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+1+\sqrt{3}=2\)
a) \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}=3\sqrt{2}-4\sqrt{9.2}+2\sqrt{16.2}-\sqrt{25.2}\)
\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}=-6\sqrt{2}\)
b) \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}=\left|\sqrt{2}-\sqrt{3}\right|+\sqrt{9.2}=\sqrt{3}-\sqrt{2}+3\sqrt{2}\)
\(=2\sqrt{2}+\sqrt{3}\)
c) \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}=\sqrt{25.\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{9.5}+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}\)
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-1=3\sqrt{5}-1\)
d) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}+\left|\sqrt{3}+1\right|\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{3}+1=\left|2-\sqrt{3}\right|+\sqrt{3}+1=2-\sqrt{3}+\sqrt{3}+1=3\)
Rút gọn biểu thức: \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
#)Giải :
Bình phương hai vế, ta được :
\(B^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\sqrt{\left(16-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\left(\sqrt{5}-1\right)\)
Do \(B>0\)nên \(B=\sqrt{8+2\left(\sqrt{5}-1\right)}=\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)
#~Will~be~Pens~#
Bình phương hai vế, ta được:
B2=8+2√(4+√10+2√5)(4−√10+2√5)=8+2√(16−(10+2√5))B2=8+2(4+10+25)(4−10+25)=8+2(16−(10+25))
B2=8+2√6−2√5=8+2√(√5−1)2=8+2(√5−1)B2=8+26−25=8+2(5−1)2=8+2(5−1)
Do B>0B>0 nên B=√8+2(√5−1)=√6+2√5=√5+1B=8+2(5−1)=6+25=5+1
Tk mk nha
~ Hok tốt ~
Thanks m.n đã tk mk
Rút gọn biểu thức:
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Đặt biểu thức trên là \(A\)
Ta có \(A^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)
\(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{5-2\sqrt{5}+1}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)
\(\Rightarrow A=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)
cho hỏi sao ra được kết quả như vậy giải thích dùm đi
Gọi biểu thức là P:
Bình phương hai vế, ta có:
\(P^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
\(P^2=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\left(\sqrt{5}-1\right)\)
\(\text{Do }P>0\text{ nên }P=\sqrt{8+2\left(\sqrt{5}-1\right)}=\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)
rút gọn biểu thức
\(\sqrt{4-\sqrt{10+2\sqrt{5}}}+\sqrt{4+\sqrt{10+2\sqrt{5}}}\)
Đặt cái đấy là A
A2 = 8 + \(2\sqrt{6-2\sqrt{5}}\)
= 8 + \(2\sqrt{5}-2\)
= 6 + 2\(\sqrt{5}\)= (\(1+\sqrt{5}\))2
=> A = \(1+\sqrt{5}\)
\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Rút gọn biểu thức
bằng 4,877630889.10^-4
Rút gọn mà . Ai nói dùng máy
Đặt \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(\Rightarrow A^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}+4-\sqrt{10+2\sqrt{5}}\)
\(=8+2\sqrt{16-10-2\sqrt{5}}\)
\(=8+2\sqrt{6-2\sqrt{5}}\)
\(=8+2\sqrt{\left(\sqrt{6}-1\right)^2}\)
\(=8+2\left(\sqrt{6}-1\right)\)
\(=6+2\sqrt{6}\)
\(\Rightarrow A=\sqrt{6+2\sqrt{6}}\)
rút gọn biểu thức
a, \(\dfrac{1}{\sqrt{7-\sqrt{24}+1}}-\dfrac{1}{\sqrt{7+\sqrt{24}+1}}\)
b,\(\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
c,\(\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4}+\sqrt{7}}+\dfrac{4-\sqrt{7}}{3\sqrt{7}-\sqrt{4}-\sqrt{7}}\)
b) Ta có: \(\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
\(=\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}+\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}\)
\(=\dfrac{3+\sqrt{5}}{2}+\dfrac{3-\sqrt{5}}{2}\)
\(=\dfrac{3+3}{2}=\dfrac{6}{2}=3\)