Cho x-y=1. Tính giá trị biểu thức
P=(x+y)(x^2+y^2)(x^4+y^4)-x^8+y^8+1
Gợi ý: theo hằng đẳng thức 3
cho x-y=1. Tính giá trị biểu thức :
P=(x+y).(x^2+y^2).(x^4+y^4)-x^8+y^8+1
Gợi ý : Áp dụng hằng đẳng thức 3
(A+B).(A-B)=A^2-B^2
Cho các số x, y thoả mãn đẳng thức \(x^4+x^2y^2+y^4=4\); \(x^8+x^4y^4+y^8=8\)
Hãy tính giá trị biểu thức: \(A=x^{12}+x^2y^2+y^{12}\)
Từ x8+x4y4+y8=(x4+y4)2-x4y4=(x4+y4-x2y2) (x4+y4+x2y2)=4(x4+y4-x2y2) =8
=>(x4+y4-x2y2)=2=>x4+y4=2+x2y2 kết hợp với x4+y4+x2y2=4
=> 2+x2y2+x2y2=4 => x2y2=1 (x4y4 sẽ = 1 nốt ) => x4+y4=3 và x8+y8=7
Xét (x4+y4)3=x12+y12+3x4y4(x4+y4)=x12+y12+3.1.3=33=27
=>x12+y12=18=> A = 18+1=19
Bài 3: Rút gọn biểu thức (Dùng hằng đẳng thức)
1, (x+y)\(^2\)-(x-y)\(^2\)
2, (x+y)\(^3\)-(x-y)\(^3\)-2y\(^3\)
3,(x+y)\(^2\)-2(x+y)(x-y)+(x-y)\(^2\)
4,(2x+3)\(^2\)-2(2x+3)(2x+5)+(2x+5)\(^2\)
5, 9\(^8\). 2\(^8\)-(18\(^4\)+1)(18\(^4\)-1)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
Cho a, b là các hằng số dương x và y tùy ý thuộc R thỏa mãn
x^2+y^2=1 và x^4/a + y^4/b = 1/a+b
Tính giá trị biểu thức M= x^2012/a^1004 + y^2012/b^1006 theo a và b
Ta có:
\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)
Dấu = xảy ra khi .... Làm tiếp nhé
ta có: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)=> \(\frac{bx^4+ay^4}{ab}=\frac{\left(x^2+y^2\right)^2}{a+b}\) (vì x^2 +y^2 =1)
=>\(abx^4+b^2x^4+aby^4+a^2y^4\) = \(ab\left(x^4+2x^2y^2+y^4\right)\)
=>\(abx^4+b^2x^4+aby^4+a^2y^4\) = \(abx^4+2abx^2y^2+aby^4\)
=> \(b^2x^4-2abx^2y^2+a^2y^4=0\)
=>\(\left(bx^2-ay^2\right)^2=0\)=>\(bx^2=ay^2\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
=> \(\frac{x^{2012}}{a^{1006}}=\frac{1}{\left(a+b\right)^{1006}}\) và \(\frac{y^{2012}}{b^{1006}}=\frac{1}{\left(a+b\right)^{1006}}\)
=>\(\frac{x^{2012}}{a^{1006}}+\frac{y^{2012}}{b^{1006}}=\frac{2}{\left(a+b\right)^{1006}}\)
bài 48 nè xuân:
Kẻ DM và IN //BC (M,N thuộc AC)
ta có: ^ADM =ABC (vì DM//BC)
^AMD=^ACB (vì................)
Mà ^ABC=^ACB( vì tg ABC cân tại A) nên ^AMD=^ADM => tg ADM cân tại A=> AD=AM. mà AD=CE(gt) => AM=CE
ta có: IN//BC , mà DM//BC nên DM//IN. Mặt khác : I là t/đ của DE (gt) => N là t/đ của ME (ĐL Ta-Lét)=> MN=EN
Ta có: AN=AM+MN
CN= CE+EN
Mà AM= CE(cmt) ; MN=EN (cmt) nên AN=CN => N là t/đ của AC
Xét tg ACK có: IN//IK và N là t/đ của AC (cmt) => I là t/đ của AK (ĐL Ta -Lét)
Xét tg ADKE có: I là t/đ của AK (cmt) và I là t/đ của DE (gt)
=> tg ADKE là hbh
Bài 1: Tính
a.(2x+3y)^2-(5x-y)^2
b(x+2/5)^2.(x-2/5)-(2x-y)^2
c.(x+1/4)^2-(2x-3)^3
Bài 2: Tính giá trị biểu thức bằng cách vận dụng hằng đẳng thức
A=x^3+3x^2+3x+6 với x=19
B=x^3-3x^2+3x với x=11
Bài 2:
a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)
b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)
Tính giá trị của biểu thức sau :
c) C=\(\dfrac{x^3}{2}\)+\(\dfrac{x^2y}{4}\)+\(\dfrac{xy^2}{6}\)+\(\dfrac{y^3}{27}\)với x=-8;y=6
có áp dụng bảy hàng đẳng thức đáng nhớ
Thay x=-8 và y=6 cào C ta được:
\(C=\dfrac{\left(-8\right)^3}{2}+\dfrac{\left(-8\right)^2.6}{4}+\dfrac{\left(-8\right).6^2}{6}+\dfrac{6^3}{27}\)\(=\dfrac{-512}{2}+\dfrac{384}{4}-\dfrac{288}{6}+\dfrac{216}{27}\)\(=-256+96-48+8=-200\)
\(C=x^2\left(\dfrac{x}{2}+\dfrac{y}{4}\right)+y^2\left(\dfrac{x}{6}+\dfrac{y}{27}\right)=\left(-8\right)^2\left(-\dfrac{8}{2}+\dfrac{6}{4}\right)+6^2\left(-\dfrac{8}{6}+\dfrac{6}{27}\right)=-200\)
a) Tính giá trị biểu thức 1/2 . x^5 . y - 3/4 . x^5 . y + x^5 . y tại x = 2 và y = -1 ( Bằng 2 cách )
b) Tính giá trị biểu thức 5 . x^10 . y^15 + 3 . x^10 . y^15 - 8 . x^10 . y^15 tại x = 2019 và y = 2020
Bạn nào làm được mình sẽ tick cho nha!
1. Tính Giá trị nhỏ nhất của biểu thứ (x+1)(x+2)(x+3)(x+6)+2010
2. Phân tích đa thức thành nhân tử (x-2)(x-4)(x-6)(x-8) +15
3. Tính giá trị biểu thức sau: x^2 +y= y^2 +x. tính giá trị của biểu thức sau A= (x^2 +y^2 +xy) : (xy-1)
bbgfhfygfdsdty64562gdfhgvfhgfhhhhh
\hvhhhggybhbghhguyg
cho các số x,y thỏa mãn x^4 +x^2*y^2+y^4=0; x^8 +y^8+x^4*y^4=8 .Biểu thức A=x^12+x^2*y^2+y^12 có giá trị là
Đặt x^2+y^2=a; x^2*y^2=b
nên hệ pt
a^2-b=0(a^2-2b)^2-b^2=8Giải ra tìm a,b rồi thay vô tìm x,y