Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoàng a long
Xem chi tiết
Nguyễn N
Xem chi tiết
ST
1 tháng 7 2018 lúc 14:15

1/

a,\(A=x-x^2=-x^2+x=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(-\left(x-\frac{1}{2}\right)^2\le0\Rightarrow A=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra <=>x=1/2

Vậy Amax=1/4 khi x=1/2

b, \(B=2x-2x^2-5=-2x^2+2x-5\)

\(\Rightarrow2B=-4x^2+4x-10=-\left(4x^2-4x+1\right)-9=-\left(2x-1\right)^2-9\)

Vì \(-\left(2x-1\right)^2\le0\Rightarrow2B=-\left(2x-1\right)^2-9\le-9\Rightarrow B\le\frac{-9}{2}\)

Dấu "=" xảy ra <=>x=1/2

Vậy Bmax=-9/2 khi x=1/2

2/

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

kudo sinhinichi
Xem chi tiết
Hân Lê
Xem chi tiết
2611
10 tháng 1 2023 lúc 20:23

`1)` Biểu thức xác định `<=>x+1 \ne 0<=>x \ne -1`

`[x^2+2x+1]/[x+1]=[(x+1)^2]/[x+1]=x+1`

`2)` Bth xác định `<=>x(x-3) \ne 0<=>{(x \ne 0),(x \ne 3):}`

`[x^2-6x+9]/[x(x-3)]=[(x-3)^]/[x(x-3)]=[x-3]/x`

`3)` Bth xác định `<=>2x(x+2) \ne 0<=>{(x \ne 0),(x \ne -2):}`

`[x^2-4]/[2x(x+2)]=[(x-2)(x+2)]/[2x(x+2)]=[x-2]/[2x]`

`4)` Bth xác định `<=>5x^2-10x \ne 0<=>5x(x-2) \ne 0<=>{(x \ne 0),(x \ne 2):}`

`[x^2-2x]/[5x^2-10x]=[x(x-2)]/[5x(x-2)]=1/5`

Ngô Hải Nam
10 tháng 1 2023 lúc 20:25

1)

\(ĐKXĐ:x\ne-1\)

\(\dfrac{x^2+2x+1}{x+1}\\ =\dfrac{\left(x+1\right)^2}{x+1}\\ =x+1\)

2)

ĐKXĐ x khác 0 và x khác 3

\(\dfrac{x^2-6x+9}{x\left(x-3\right)}\\ =\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}\\ =\dfrac{x-3}{x}\)

3)

ĐKXĐ: x khác 0 và x khác -2

\(\dfrac{x^2-4}{2x\left(x+2\right)}\\ =\dfrac{\left(x-2\right)\left(x+2\right)}{2x\left(x+2\right)}\\ =\dfrac{x-2}{2x}\)

4)

DKXĐ: x khác 0 và x khác 2

\(\dfrac{x^2-2x}{5x^2-10x}\\ =\dfrac{x\left(x-2\right)}{5x\left(x-2\right)}\\ =\dfrac{1}{5}\)

⭐Hannie⭐
10 tháng 1 2023 lúc 20:28

đk `x≠-1`

`(x^2+2x+1)/(x+1)`

`=((x+1)^2)/(x+1)`

`=x+1`

---------

đk \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)

`(x^2-6x+9)/(x(x-3))`

`=((x-3)^2)/(x(x-3))`

`=(x-3)/x`

--------

 đk \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-2\end{matrix}\right.\)

`(x^2-4)/(2x(x+2))`

`=((x-2)(x+2))/(2x(x+2))`

`=(x-2)/(2x)`

--------

đk \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\)

`(x^2-2x)/(5x^2-10x)`

`=(x(x-2))/(5x(x-2))`

`=x/(5x)`

Nguyễn Kim Thành
Xem chi tiết
ST
26 tháng 11 2018 lúc 15:19

a, \(M=\frac{3\left(x^2+1\right)}{\left(x^4+x^2\right)+\left(2x^3+2x\right)+\left(6x^2+6x\right)}=\frac{3\left(x^2+1\right)}{x^2\left(x^2+1\right)+2x\left(x^2+1\right)+6\left(x^2+1\right)}=\frac{3\left(x^2+1\right)}{\left(x^2+2x+6\right)\left(x^2+1\right)}=\frac{3}{x^2+2x+6}\)

b, ta có: \(M=\frac{3}{x^2+2x+6}=\frac{3}{\left(x^2+2x+1\right)+5}=\frac{3}{\left(x+1\right)^2+5}\)

Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+5\ge5\Rightarrow\frac{1}{\left(x+1\right)^2+5}\le\frac{1}{5}\Rightarrow M=\frac{3}{\left(x+1\right)^2+5}\le\frac{3}{5}\)

Dấu "=" xảy ra <=>x+1=0 <=> x=-1

to tien cuong
Xem chi tiết
nguyen van bi
7 tháng 12 2020 lúc 19:21

bạn viết thế này khó nhìn quá

Khách vãng lai đã xóa
Lê Đức Thành
26 tháng 11 2021 lúc 20:17

nhìn hơi đau mắt nhá bạn hoa mắt quá

Khách vãng lai đã xóa
Trần Nguyên Sơn
Xem chi tiết
Lê Mai Tuyết Hoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2021 lúc 22:42

a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

\(C=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)

Hiếu Lê Đức
Xem chi tiết
Trần Tuấn Hoàng
14 tháng 3 2022 lúc 17:38

a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)

\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)

b. -Để M thuộc Z thì:

\(\left(x^2+x-2\right)⋮\left(x+3\right)\)

\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)

\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)

\(\Rightarrow4⋮\left(x+3\right)\)

\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)

c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)

\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)