Tìm x
\(\left(X-2\right)^2=\left(X-2\right)^4\)
\(770\div\left[\left(20X+10\right)\div X\right]=35\)
Tìm x biết
\((1+X)+\left(2+X\right)+\left(3+X\right)+...+\left(10+X\right)=75\)\(X\div[\left(1800+600\right)\div30]=560\div\left(315-35\right)\)
(1 + x) + (2 + x) + (3 + x) + ... + (10 + x) = 75
=> (1 + 2 + 3 + ... + 10) + (x + x + x + ... + x) = 75
=> 55 + 10x = 75
=> 10x = 20
=> x = 2
vậy_
x : [(1800 + 600) : 30] = 560 : (315 - 35)
=> x : [2400 : 30] = 560 : 280
=> x : 80 = 2
=> x = 160
vậy_
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+10\right)=75\)
\(10x+45=75\)
\(10x=75-45=30\)
\(x=30:10=3\)
Tìm x : \(\frac{\left(x-3\right)^2}{2}-1\frac{1}{3}\left(x+2\right)^2-\frac{5}{4}\left(x-1\right)\left(x+1\right)=1\frac{1}{2}x\left(x-2\right)-x-4\)
Tìm x : \(\left(x-3\right)^2-\left(2x+1\right)^2-2\left(x-1\right)\left(x+2\right)=3\left(x-3\right)-\left(4x-1\right)\left(x+2\right)\)
a/ \(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\\3+2^{x+1}=24-\left[16-\left(4-1\right)\right]\)
\(3+2^{x+1}=24-\left(16-3\right)\\ 3+2^{x-1}=24-13\\ 3+2^{x-1}=11\\ 2^{x+1}=11-3\\ 2^{x-1}=8\)
\(2^{x-1}=2^3\\ \Rightarrow x-1=3\\x=3+1\\ x=4\)
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=205550\)
\(\left(x.100\right)+\left(1+2+3+....+100\right)=205550\)
Ta tính tổng \(1+2+3+...+100\\ \) trước
Số các số hạng: \(\left[\left(100-1\right):1+1\right]=100\)
Tổng :\(\left[\left(100+1\right).100:2\right]=5050\)
Thay số vào ta có được:
\(\left(x.100\right)+5050=205550\\ \\ x.100=205550-5050\\ \\x.100=20500\\ \\x=20500:100\\ \\\Rightarrow x=2005\)
\(\left|x-5\right|=18+2.\left(-8\right)\\\left|x-5\right|=18+\left(-16\right)\\\left|x-5\right|=2\: \)
\(\Rightarrow\left[\begin{array}{nghiempt}x-5=2\\\\x-5=\left(-2\right)\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=2+5\\\\x=\left(-2\right)+5\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=7\\\\x=3\end{array}\right.}\)
=> x ϵ {7;3}
Tìm số tn biết
770÷[(20x+10)÷x]=35
30-[4 (x-2)+15]=3
\(\left[8X-120\div4\right].3^3=3^6\)
\(\left\{X^2-[8^2-\left(5^2-8.3\right)^3-7.9]^3-4.12\right\}^3=1\)
\(30-\left[4\left(x-2\right)+15\right]=3\) \(\left(8x-120:4\right).3^3=3^6\)
\(4\left(x-2\right)+15=27\) \(\left(8x-120:4\right)=27\)
\(4\left(x-2\right)=12\) \(8x-30=27\)
\(x-2=3\) \(8x=57\)
\(x=5\) \(x=\frac{57}{8}\)
Tìm tập xác định
\(\left[\left(1+\frac{1}{x^2}\right)\div\left(1+2x+x^2\right)+\frac{2}{\left(x+1\right)^3}\times\left(1+\frac{1}{x}\right)\right]\div\frac{x-1}{x^3}\)
\(=\left[\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{2}{\left(x+1\right)^3}\times\frac{x+1}{x}\right]\div\frac{x-1}{x^3}\)
\(=\left(\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\times\frac{2}{x}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\left(\frac{x^2+1}{x^2}+\frac{2}{x}\right)\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x^3+2x^2+x}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x^2+2x+1\right)}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x+1\right)^2}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\frac{1}{x^2}\times\frac{x^3}{x-1}\)
\(=\frac{x}{x-1}\)
Giải phương trình:
a, \(2x^3+3x^2+6x+5=0\) b, \(4x^4+12x^3+5x^2-6x-15=0\) c, \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)=40\)2x3 + 3x2 + 6x + 5 = 02
<=> 2x3 + x2 + 5x + 2x2 + x + 5 = 0
<=> x(2x2 + x + 5) + (2x2 + x + 5) = 0
<=> (2x2 + x + 5)(x + 1) = 0
<=> x + 1 = 0 (vì 2x2 + x + 5 \(\ge\) 4,875 > 0 \(\forall\) x)
<=> x = - 1
Vậy tập nghiệm của pt là \(S=\left\{-1\right\}\)
b) 4x4 + 12x3 + 5x2 - 6x - 15 = 0
<=> 4x4 + 10x3 + 2x3 + 5x2 - 6x - 15 = 0
<=> 2x3(2x + 5) + x2(2x + 5) - 3(2x + 5) = 0
<=> (2x + 5)(2x3 + x2 - 3) = 0
<=> (2x + 5)(2x3 - 2x2 + 3x2 - 3) = 0
<=> (2x + 5)(x - 1)(2x2 + 3x + 3) = 0
<=> (2x + 5)(x - 1)[x2 + (x + 3/2)2 + 3/4]= 0
Mà x2 + (x + 3/2)2 + 3/4 > 0\(\forall x\)
\(\Rightarrow\left[\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-\frac{5}{2}\\x=1\end{matrix}\right.\)
Vậy ...
c) (x + 1)(x + 2)(x + 3)(x + 4)(x + 5) = 40
Khai triển hết ra ta được:
x5 + 15x4 + 85x3 + 225x2 + 274x + 80 = 0 (*) (đây là phương trình đối xứng bậc 5)
<=> (x + 1)(x4 + 14x3 + 71x2 + 154x + 80) = 0
=> x = -1 hoặc x4 + 14x3 + 71x2 + 154x + 80 = 0
Bây giờ ta cần giải pt x4 + 14x3 + 71x2 + 154x + 80 = 0 (đây là pt đối xứng bậc chẵn)
Dễ thấy x = 0 không là nghiệm của pt
Chia cả 2 vế của pt cho x2 (x2 khác 0)
Tới đây tự lm tiếp nhé!
Tìm x : \(\frac{2\left(x-1\right)\left(x-3\right)}{3}-\frac{4\left(2x-1\right)^2}{5}=\frac{\left(1+3x\right)^2}{2}-3x\left(1-x\right)\)
tìm x biết :
\(\left|x-1\right|+2.\left|x-2\right|+3.\left|x-3\right|+4.\left|x-4\right|+5.\left|x-5\right|+20x=0\)
\(\left|x-1\right|+2\left|x-2\right|+3\left|x-3\right|+4\left|x-4\right|+5\left|x-5\right|+20x=0\left(1\right)\)
TH1: x<1
(1) trở thành 1-x+2(2-x)+3(3-x)+4(4-x)+5(5-x)+20x=0
=>\(1-x+4-2x+9-3x+16-4x+25-5x+20x=0\)
=>\(5x+55=0\)
=>x=-11(nhận)
TH2: 1<=x<2
Phương trình (1) sẽ trở thành:
\(x-1+2\left(2-x\right)+3\left(3-x\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+4-2x+9-3x+16-4x+25-5x+20x=0\)
=>\(7x+53=0\)
=>\(x=-\dfrac{53}{7}\left(loại\right)\)
TH3: 2<=x<3
Phương trình (1) sẽ trở thành:
\(x-1+2\left(x-2\right)+3\left(3-x\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+2x-4+9-3x+16-4x+25-5x+20x=0\)
=>\(11x+45=0\)
=>\(x=-\dfrac{45}{11}\left(loại\right)\)
TH4: 3<=x<4
Phương trình (1) sẽ trở thành:
\(x-1+2\left(x-2\right)+3\left(x-3\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+2x-4+3x-9+16-4x+25-5x+20x=0\)
=>\(-3x+27=0\)
=>x=9(loại)
TH5: 4<=x<5
Phương trình (1) sẽ trở thành:
\(\left(x-1\right)+2\left(x-2\right)+3\left(x-3\right)+4\left(x-4\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+2x-4+3x-9+4x-16+25-5x+20x=0\)
=>\(25x-5=0\)
=>x=1/5(loại)
TH6: x>=5
Phương trình (1) sẽ trở thành:
\(\left(x-1\right)+2\left(x-2\right)+3\left(x-3\right)+4\left(x-4\right)+5\left(x-5\right)+20x=0\)
=>\(x-1+2x-4+3x-9+4x-16+5x-25+20x=0\)
=>35x-55=0
=>x=55/35(loại)