tìm giá trị nhỏ nhất giá trị lớn nhất của biểu thức: 1/16x*2-9x+10
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Bài 1:
Ta có: \(D=\sqrt{16x^4}-2x^2+1\)
\(=4x^2-2x^2+1\)
\(=2x^2+1\)
a,Tìm giá trị nhỏ nhất của biểu thức
A=(2x+1/3)^4-1
b,Tìm giá trị lớn nhất của biểu thức
B=-(4/9x-2/15)^6+3
tìm giá trị nhỏ nhất và lớn nhất của các biểu thức sau
1, 9x mũ 2 + 6x -1
Đặt A 9x2 + 6x - 1 = 9x2 + 6x + 1 - 2 = (3x + 1)2 - 2 \(\ge\)-2
=> Min A = -2
Dấu "=" xảy ra <=> 3x + 1 = 0
<=> x = -1/3
Vậy Min A = -2 <=> x = -1/3
Trả lời:
1, \(9x^2+6x-1=9x^2+6x+1-2=\left(3x+1\right)^2-2\ge-2\forall x\)
Dấu "=" xảy ra khi 3x + 1 = 0 <=> x = - 1/3
Vậy GTNN của bt = - 2 khi x = - 1/3
tìm giá trị lớn nhất ,nhỏ nhất của các biểu thức sau:
a)3x^2+6x+4
b)-3x-x^2+4
c)9x^2-6x+8
d)5x-16x^2+4
e)-2x-x^2+4
a) Đặt A = \(3x^2+6x+4\)
\(A=3\left(x^2+2x+1\right)+1\)
\(A=3\left(x+1\right)^2+1\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy Min A =1 khi x = -1
b) Đặt \(B=-3x-x^2+4\)
\(-B=x^2+3x-4\)
\(-B=\left(x^2+3x+\frac{9}{4}\right)-\frac{25}{4}\)
\(-B=\left(x+\frac{3}{2}\right)^2-\frac{25}{4}\)
Mà \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-B\ge\frac{-25}{4}\)
\(\Leftrightarrow B\le\frac{25}{4}\)
Dấu "=" xảy ra khi : \(x=-\frac{3}{2}\)
Vậy...
tìm giá trị lớn nhất nhỏ nhất của biểu thức sau : a) P= 3+2x-9x^2 b) Q= -2x^2-y^2+2xy+1
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Với x là số nguyên.
a) Tìm giá trị nhỏ nhất của biểu thức: M = (2x - 4)4 + 5.
b) Tìm giá trị lớn nhất của biểu thức: N = 10 - / x + 2 /
a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)
\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)
Dấu '=' xảy ra khi 2x-4=0
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2
b) Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)
\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x+2=0
hay x=-2
Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2
1) Tìm giá trị nhỏ nhất của biểu thức:
\(A= 25x^2+3y^2-10x+11\)
2) Tìm giá trị lớn nhất của biểu thức:
\(B=19-6x-9x^2\)
làm hộ em với ạ.
Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của các biểu thức sau: x^2-4x+10; (1-x)(3x-4); 3x^2-9x+5; -2x^2+5x+2; -3x^2-6x+5; x^4-2x^2+3.
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4