phân tích đa thức thành nhân tử
a. 4x^2-3x-4
b. x^2+2x-3
c. 64+x^4+y^4
d. (x+1)(x+2)(x+3)(x+4)-24
Bài 5. Phân tích các đa thức thành nhân tử
a) (x2-4x)2-8(x2-4x)+15 b) (x2+2x)2+9x2+18x+20
c) ( x+1)(x+2)(x+3)(x+4)-24 d) (x-y+5)2-2(x-y+5)+1
Bài 6. Phân tích các đa thức thành nhân tử
a) x2y+x2-y-1 b) (x2+x)2+4(x2+x)-12
c) (6x+5)2(3x+2)(x+1)-6
bài 1: phân tích đa thức thành nhân tử
a)x^3+x^2-4x-4
b)x^2-2x-15
c)x^2-4+(x-2)^2
d)x^3-2x^2+x-xy^2
\(a,x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x^2-4\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\left(x+1\right)\\ b,x^2-2x-15=\left(x^2-5x\right)+\left(3x-15\right)=x\left(x-5\right)+3\left(x-5\right)=\left(x+3\right)\left(x-5\right)\\ c,x^2-4+\left(x-2\right)^2=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=\left(x-2\right)\left(x+2+x-2\right)=2x\left(x-2\right)\)
\(d,x^3-2x^2+x-xy^2=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\)
Bài 1: Phân tích đa thức thành nhân tử
a) (6x+3)-(2x-5)(2x+1)
b) (3x-2)(4x-3)-(2-3x)(x-1)-2(3x-2)(x+1)
Bài 2*:Phân tích đa thức thành nhân tử
a) (a-b)(a+2b)-(b-a)(2a-b)-(a-b)(a+3b)
b) 5xy3-2xy2-15y2+6z
c) (x+y)(2x-y)+(2x-y)(3x-y)-(y-2x)
d) ab3c2-a2b2c2+ab2c3-a2bc
e) x2(y-z)+y2(z-x)+z2(x-y)
f) x2-6xy+9y2+4x-12y
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
Phân tích các đa thức sau thành nhân tử
a)2x^2 + 6x=
b) x^4 + 3x^3 + x +3=
c) 64- x^2 - y^2 + 2xy=
Rứt gọn bt
A= ( x+ 5) ( x+ 1)+ (x-2) (x^2+ 2xx +4)- (x^2+ x-2)
giúp mình nhanh với
\(a,=2x\left(x+3\right)\\ b,=x^3\left(x+3\right)+\left(x+3\right)=\left(x^3+1\right)\left(x+3\right)\\ =\left(x+1\right)\left(x+3\right)\left(x^2-x+1\right)\\ c,=64-\left(x-y\right)^2=\left(8-x+y\right)\left(8+x-y\right)\\ A=x^2+6x+5+x^3-8-x^2-x+2\\ A=x^3+5x-1\)
a) 2x2+6x=2x(x+3)
b) x4+3x3+x+3=(x4+x)+(3x3+3)=x(x3+1)+3(x3+1)=(x+3)(x3+1)
c) 64-x2-y2+2xy=-(x2-2xy+y2)+82=8-(x+y)2=(8+x+y)(8-x-y)
A= (x+5)(x+1)+(x-2)(x2+2xx+4)-(x2+x-2)
A= x2+6x+5+x3-8-x2-x+2
A= x3+(x2-x2)+(6x-x)+(5-8+2)
A= x3+5x-1
phân tích đa thức thành nhân tử
a)8x^3+27
b) 4x^2-4x+1-y^2
c) x^4-2x^3+x^2-2x
d) x^2-4y^2+2x+4y
a) \(8x^3+27=\left(2x+3\right)\left(4x^2-6x+9\right)\)
b) \(4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-1-y\right)\left(2x-1+y\right)\)
c) \(x^4-2x^3+x^2-2x=x^3\left(x-2\right)+x\left(x-2\right)=x\left(x-2\right)\left(x^2-1\right)=x\left(x-2\right)\left(x-1\right)\left(x+1\right)\)
d) \(x^2-4y^2+2x+4y=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)=\left(x+2y\right)\left(x-2y+2\right)\)
Phân tích đa thức thành nhân tử
a/ 4x 2 - 8x + 4
b/ x 2 – y 2 + 3x + 3y
\(a,=4\left(x-1\right)^2\\ b,=\left(x-y\right)\left(x+y\right)+3\left(x+y\right)=\left(x+y\right)\left(x-y+3\right)\)
a, 4x2 - 8x + 4 = (2x)2 - 2.2x.2 + 2 = (2x - 2)2
b, x2 - y2 + 3x + 3y = (x2 - y2) + (3x + 3y) = (x- y). (x + y) + 3.(x + y) = (x+y).(x- y + 3)
phân tích đa thức thành nhân tử
a) (x+y)2-8(x+y)+12
b) (x2+2x)2-2x2-4x-3
c) (x2+x)2-2(x2+x)-15
a/ \(\left(x+y\right)^2-8\left(x+y\right)+12\)
\(=\left(x+y\right)\left(x+y-8+12\right)\)
\(=\left(x+y\right)\left(x+y+4\right)\)
==========
b/\(\left(x^2+2x\right)^2-2x^2-4x-3\)
\(=\left(x^2+2x\right)^2-\left(2x^2+4x\right)-3\)
\(=\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3\)
\(=\left(x^2+2x\right)\left(x^2+2x-5\right)\)
===========
c/ \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-2-15\right)\)
\(=\left(x^2+x\right)\left(x^2+x-17\right)\)
[---]
phân tích đa thức thành nhân tử
a) \(P=-3x^3+5x\)
b) \(Q=\left(2x-1\right)+\left(x-2\right)\left(2x-1\right)\)
c) \(R=4-16x^2\)
d) \(S=36-4x^2\)
e) \(T=8x^3-1\)
f) \(Q=8-x^3\)
g) \(N=64-x^3\)
a: \(P=-3x^3+5x\)
\(=x\cdot\left(-3x^2\right)+x\cdot5\)
\(=x\left(-3x^2+5\right)\)
b: \(Q=\left(2x-1\right)+\left(x-2\right)\left(2x-1\right)\)
\(=\left(2x-1\right)\left(1+x-2\right)\)
\(=\left(2x-1\right)\left(x-1\right)\)
c: \(R=4-16x^2\)
\(=4\cdot1-4\cdot4x^2\)
\(=4\left(1-4x^2\right)\)
\(=4\left(1-2x\right)\left(1+2x\right)\)
d: \(S=36-4x^2\)
\(=4\cdot9-4\cdot x^2\)
\(=4\left(9-x^2\right)\)
\(=4\left(3-x\right)\left(3+x\right)\)
e: \(T=8x^3-1\)
\(=\left(2x\right)^3-1^3\)
\(=\left(2x-1\right)\left(4x^2+2x+1\right)\)
f: \(Q=8-x^3\)
\(=2^3-x^3\)
\(=\left(2-x\right)\left(4+2x+x^2\right)\)
g: \(N=64-x^3\)
\(=4^3-x^3\)
\(=\left(4-x\right)\left(16+4x+x^2\right)\)
Phân tích đa thức sao thành nhân tử
a)x^3-2x^2
b)2x(x-3)+9.(3-x)
c)x^2+4x+4-y^2
a: \(=x^2\left(x-2\right)\)
b: \(=\left(x-3\right)\left(2x-9\right)\)