Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lê Nhật Linh
Xem chi tiết
Hoàng Lê Bảo Ngọc
3 tháng 10 2016 lúc 17:13

\(P=\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{-x^3\left(y-z\right)-y^3\left(z-x\right)-z^3\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{-x^3y+x^3z-y^3z+y^3x-z^3x+z^3y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{\left(x-y\right)\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=x+y+z=2008\)

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 9:37

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

Crackinh
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2022 lúc 21:24

\(2x.f'\left(x\right)-f\left(x\right)=x^2\sqrt{x}.cosx\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}}.f'\left(x\right)-\dfrac{1}{2x\sqrt{x}}f\left(x\right)=x.cosx\)

\(\Leftrightarrow\left[\dfrac{f\left(x\right)}{\sqrt{x}}\right]'=x.cosx\)

Lấy nguyên hàm 2 vế:

\(\int\left[\dfrac{f\left(x\right)}{\sqrt{x}}\right]'dx=\int x.cosxdx\)

\(\Rightarrow\dfrac{f\left(x\right)}{\sqrt{x}}=x.sinx+cosx+C\)

\(\Rightarrow f\left(x\right)=x\sqrt{x}.sinx+\sqrt{x}.cosx+C.\sqrt{x}\)

Thay \(x=4\pi\)

\(\Rightarrow0=4\pi.\sqrt{4\pi}.sin\left(4\pi\right)+\sqrt{4\pi}.cos\left(4\pi\right)+C.\sqrt{4\pi}\)

\(\Rightarrow C=-1\)

\(\Rightarrow f\left(x\right)=x\sqrt{x}.sinx+\sqrt{x}.cosx-\sqrt{x}\)

Lê Khả Duy
Xem chi tiết
Nguyen My Van
12 tháng 5 2022 lúc 18:15

Ta có: \(x-y-z=0\)

\(\Rightarrow x-y=z\)

\(x-z=y\)

\(y+z=x\)

\(\Rightarrow B=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)

\(=\dfrac{x-z}{x}.\dfrac{-\left(y-x\right)}{y}.\dfrac{z+y}{z}\)

\(=\dfrac{y}{x}.-\dfrac{z}{y}.\dfrac{z}{x}=-1\)

\(\Rightarrow B=-1\)

Ngô Đức Anh
Xem chi tiết
phạm anh thơ
Xem chi tiết
phạm anh thơ
13 tháng 7 2017 lúc 19:57

Giúp em cái

Đặng Khánh
Xem chi tiết
Yasuo
Xem chi tiết
Nguyễn Nhật Minh
24 tháng 1 2017 lúc 16:20

Ta có \(x-y-z=0\)

\(\Rightarrow\hept{\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}}\)( 1 )

Ta có:

\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

Thay điều ( 1 ) vào biểu thức ta có:

\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

\(\Rightarrow B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)

\(\Rightarrow B=-1\)

Vậy B = -1 

Nguyen Duy Dai
Xem chi tiết
Phan Nghĩa
15 tháng 8 2020 lúc 15:47

dễ mà bạn :))) gáy tí , sai thì thôi

\(P=\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{z^3}{\left(1+z\right)\left(1+x\right)}\)

\(=\frac{x^3\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}+\frac{y^3\left(1+x\right)}{\left(1+y\right)\left(1+x\right)\left(1+z\right)}+\frac{z^3\left(1+y\right)}{\left(1+x\right)\left(1+z\right)\left(1+y\right)}\)

\(=\frac{x^3\left(1+z\right)+y^3\left(1+x\right)+z^3\left(1+y\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{3\sqrt[3]{x^3y^3z^3\left(1+x\right)\left(1+y\right)\left(1+z\right)}}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

đến đây áp dụng BĐT phụ ( 1+a ) ( 1+b ) ( 1+c ) >= 8abc 

EZ :)))

Khách vãng lai đã xóa
Nguyen Duy Dai
15 tháng 8 2020 lúc 15:50

nhưng làm thế thì ko bảo toàn đc dấu bất đẳng thức mà

Khách vãng lai đã xóa
FL.Hermit
15 tháng 8 2020 lúc 15:53

TA LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ VÀO TỪNG BDT SAU SẼ ĐƯỢC: 

Có:    \(\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge3\sqrt[3]{\frac{x^3\left(1+x\right)\left(1+y\right)}{64\left(1+x\right)\left(1+y\right)}}\)

=>      \(\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{1+x}{8}+\frac{1+y}{8}\ge\frac{3x}{4}\)

CMTT TA CŨNG SẼ ĐƯỢC:    \(\hept{\begin{cases}\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(1+z\right)\left(1+x\right)}+\frac{1+z}{8}+\frac{1+x}{8}\ge\frac{3z}{4}\end{cases}}\)

=> TA CỘNG TỪNG VẾ 3 BĐT ĐÓ LẠI SẼ ĐƯỢC:   

\(\Rightarrow P+\frac{1+x}{4}+\frac{1+y}{4}+\frac{1+z}{4}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P+\frac{x+y+z+3}{4}\ge\frac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)-3}{4}\)

TA LẠI ÁP DỤNG BĐT CAUCHY 3 SỐ 1 LẦN NỮA SẼ ĐƯỢC: 

\(\Rightarrow P\ge\frac{2.3\sqrt[3]{xyz}-3}{4}\)

\(\Rightarrow P\ge\frac{2.3-3}{4}=\frac{6-3}{4}=\frac{3}{4}\)      (DO \(xyz=1\))

DẤU "=" XẢY RA <=>    \(x=y=z\)

MÀ:     \(xyz=1\Rightarrow x=y=z=1\)

VẬY P MIN    \(=\frac{3}{4}\Leftrightarrow x=y=z=1\)

Khách vãng lai đã xóa
Nguyễn Tiểu Nhi
Xem chi tiết