Nêu cách giải phương trình bậc 4
1. Thế nào là hai phương trình tương đương? Nêu các quy tắc biến đổi tương đương.
2. Thế nào là phương trình bậc nhất một ẩn? Nêu công thức nghiệm của phương trình bậc nhất một ẩn.
3. Nêu cách giải phương trình đưa được về phương trình dạng ax + b = 0.
1: Hai phương trình gọi là tương đương khi chúng có chung tập nghiệm
2: Phương trình bậc nhất một ẩn là phương trình có dạng ax+b=0(a<>0), với a,b là các số thực
1. Thế nào là hai phương trình tương đương? Nêu các quy tắc biến đổi tương đương.
2. Thế nào là phương trình bậc nhất một ẩn? Nêu công thức nghiệm của phương trình bậc nhất một ẩn.
3. Nêu cách giải phương trình đưa được về phương trình dạng ax + b = 0.
1: Hai phương trình gọi là tương đương khi chúng có chung tập nghiệm
2: Phương trình bậc nhất một ẩn là phương trình có dạng ax+b=0(a<>0), với a,b là các số thực
Tham Khao :
1.
a. Định nghĩa: Hai phương trình gọi là tương đương nếu chúng có cùng một tập hợp nghiệm.
b. Hai quy tắc biến đổi tương đương các phương trình:
2.
Phương trình có dạng ax + b = 0, với a và b là hai số đã cho và a ≠ 0, được gọi là phương trình bậc nhất một ẩn. Ví dụ: Phương trình 5x – 2 = 0 là phương trình bậc nhất ẩn x. Phương trình y – 8 = 4 là phương trình bậc nhất ẩn y.
3.
Để giải các phương trình đưa được về ax+b=0 a x + b = 0 ta thường biến đổi phương trình như sau: + Quy đồng mẫu hai vế và khử mẫu. + Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng ax+b=0 a x + b = 0 hoặc ax=−b a x = − b .
Phương trình nào sau đây ko phải là phương trình bậc 2 ,1 ẩn .nêu cách giải
A)\(\sqrt{2}\) t2 - 2t +4=0 B)(\(\sqrt{9}-3\))x2 + 1 =0
Phương trình A là phương trình bậc hai một ẩn vì a<>0
\(\sqrt{2}t^2-2t+4=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot\sqrt{2}\cdot4=4-16\sqrt{2}< 0\)
Do đó; Phương trình vô nghiệm
1.a/ Nêu định nghĩa phương trình bậc nhất 1 ẩn số
b/ Giải phương trình:
2x + 4 = 0
Em là học sinh lớp 7 nên em giải theo cách hiểu của em nhé:
a)* Định nghĩa
Phương trình ax + b = 0, với a và b là hai số đã cho và a # 0 được gọi là phương trình bậc nhất một ẩn
* Cách giải:
Bước 1: Chuyển vế ax = -b
Bước 2: Chia hai vế cho a: x = \(\frac{-b}{a}\)
Bước 3: Kết luận nghiệm: S = \(\frac{-b}{a}\)
Ta có thể trình bày ngắn gọn như sau:
ax + b = 0 <=> ax = -b <=> x = \(\frac{-b}{a}\)
Vậy tập nghiệm của phương trình là S = \(\left\{\frac{-b}{a}\right\}\)
b) Nếu giải theo mô hình trên, ta có:
\(A=2x+4=0\\ \Leftrightarrow2x=-4\\ \Leftrightarrow x=\frac{-4}{2}\\ \Leftrightarrow x=-2\)
Vậy tập nghiệm của phường trình A là: {-2}
Chúc chị học tốt!
Giải các phương trình bậc hai sau đây bằng cách đưa về dạng phương trình tích: 4 x 2 – 12x + 5 = 0
4 x 2 – 12x + 5 = 0 ⇔ 4 x 2 – 2x – 10x + 5 = 0
⇔ 2x(2x – 1) – 5(2x – 1) = 0 ⇔ (2x – 1)(2x – 5) = 0
⇔ 2x – 1 = 0 hoặc 2x – 5 = 0
2x – 1 = 0 ⇔ x = 0,5
2x – 5 = 0 ⇔ x = 2,5
Vậy phương trình có nghiệm x = 0,5 hoặc x = 2,5
Nêu một số cách nhẩm nghiệm của phương trình bậc cao
Ai chỉ cách giải phương trình bậc 4 với.
Ko dùng máy tính.
KO dùng máy tính CASINO là sao để giải phương trình bậc 4 tính ra giấy gãy tay có đó
bạn đưa bài ra đi ms giải đc chứ
Giải các phương trình bậc hai sau bằng cách đưa về dạng phương trình tích:
\(2x^2-3x-5=0 \\ \Leftrightarrow2x^2+2x-5x-5=0\\ \Leftrightarrow2x\left(x+1\right)-5\left(x+1\right)=0\\ \Leftrightarrow\left(2x-5\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=5\\x=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-1\end{matrix}\right.\\ Vậy.S=\left\{\dfrac{5}{2};-1\right\}\)
\(2x^2-3x-5=0\)
\(\Leftrightarrow2x^2+2x-5x-5=0\)
\(\Leftrightarrow2x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-1\end{matrix}\right.\)
Vậy \(x=\dfrac{5}{2};x=-1\) là các nghiệm của phương trình.
#\(Toru\)
Nêu cách giải phương trình lượng giác cơ bản , cách giải phương trình a sin x + b cos x = c .
a) Cách giải các phương trình lượng giác cơ bản:
+ Phương trình sin x = a.
Nếu |a| > 1 ⇒ phương trình vô nghiệm.
Nếu |a| ≤ 1 ⇒ tìm một cung α sao cho sin α = a.
Khi đó phương trình trở thành sin x = sin α
⇒ Phương trình có nghiệm:
+ Phương trình cos x = a.
Nếu |a| > 1 ⇒ phương trình vô nghiệm.
Nếu |a| ≤ 1 ⇒ tìm một cung α sao cho cos α = a.
Khi đó phương trình trở thành cos x = cos α.
⇒ Phương trình có nghiệm: x = ±α + k2π (k ∈ Z).
+ Phương trình tan x = a.
Tìm một cung α sao cho tan α = a.
Khi đó phương trình trở thành tan x = tan α.
⇒ Phương trình có nghiệm x = α + kπ (k ∈ Z).
+ Phương trình cot x = a
Tìm một cung α sao cho cot α = a.
Khi đó phương trình trở thành cot x = cot α.
⇒ Phương trình có nghiệm x = α + kπ (k ∈ Z).
b) Cách giải phương trình a.sin x + b.cos x = c.
+ Nếu a = 0 hoặc b = 0 ⇒ Phương trình lượng giác cơ bản .
+ a ≠ 0 và b ≠ 0. Chia cả hai vế của phương trình cho ta được:
Ta giải phương trình trên như phương trình lượng giác cơ bản.