Tìm giá trị lớn nhất của đa thức sau:
B=x-x2
(Trình bày từng bước nhé!)
Cm giá trị của biểu thức sau Ko phụ thuộc vào giá trị của biến:
(3x-1)(2x+7)-(x-1)(6x-5)-(18x-12)
Bạn trình bày từng bước giúp mình nhé!
Thanks
(3x-1)(2x+7)-(x-1)(6x-5)-(18x-12)
=6x2-2x+21x-7-(6x2-5x-6x+5)-18x+12
=6x2-2x+21x-7-6x2+5x+6x-5-18x+12
=12x
Tìm giá trị lớn nhất của đa thức: B = x – x 2
Ta có: B = x – x 2
= 1/4 - x 2 + x - 1/4
= 1/4 - ( x 2 - 2.x. 1/2 + 1/4 )
= 1/4 - x - 1 / 2 2
Vì x - 1 / 2 2 ≥ 0 với mọi x nên B = 1/4 - x - 1 / 2 2 ≤ 1/4
Vậy giá trị lớn nhất của B là 1/4 khi x- 1/2 = 0 hay x = 1/2 .
tìm giá trị lớn nhất của biểu thức
a)A=7-3x^2
b)B=8-(x+2)^2
các bạn trình bày ra giúp mình nhé!!!
a) vì cần tìm giá trị lớn nhất của A nên:3x\(^2\) có giá trị nhỏ nhất \(\Rightarrow\)x=0.Vậy:
A=7-3.0\(^2\)= 7 - 0=7
b) vì cần tìm giá trị lớn nhất nên:(x+2)\(^2\)có giá trị nhỏ nhất \(\Rightarrow\)x=-2.Vậy:
B=8-[(-2)+ 2]\(^2\)=8-0\(^2\)=8-0=8
Bài 1: Tìm nghiệm của đa thức sau:
a) A(x)=x2-4x+4
b) B(x)=2x3+x2+2x+1
c) C(x)=|2x-3|- 1/3
Bài 2: Tìm giá trị nhỏ nhất của biểu thức sau:
a) x2-4x+5
b) -100/(x+1)2+10
(GIÚP MÌNH CẢ 2 BÀI NHÉ! )
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
tìm giá trị lớn nhất của các biểu thức sau :
a . A = -x2 + 4x +2
b. B = x - x2 + 2
a.
\(A=-\left(x^2-4x-2\right)=-\left(x^2-4x+4-6\right)\\ =-\left(x-2\right)^2+6\le6\)
GTLN của A đạt 6 khi và chỉ khi `x=2`
b.
\(B=-\left(x^2-x-2\right)=-\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{9}{4}\right)\\ =-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
GTLN của B đạt \(\dfrac{9}{4}\) khi và chỉ khi \(x=\dfrac{1}{2}\)
a) \(A=-x^2+4x+2\)
\(A=-\left(x^2-4x-2\right)\)
\(A=-\left[\left(x-2\right)^2-6\right]\)
\(A=-\left(x-2\right)^2+6\)
Mà: \(-\left(x-2\right)^2\le0\forall x\) nên
\(A=-\left(x-2\right)^2+6\le6\)
Dấu "=" xảy ra:
\(-\left(x-2\right)^2+6=6\Leftrightarrow x=2\)
Vậy: \(A_{max}=6\) khi \(x=2\)
b) \(B=x-x^2+2\)
\(B=-\left(x^2-x-2\right)\)
\(B=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)
Mà: \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\)
Nên: \(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu "=" xảy ra:
\(-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}=\dfrac{9}{4}\Leftrightarrow x=\dfrac{1}{2}\)
Vậy: \(B_{max}=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)
6.Tìm giá trị lớn nhất của đa thức:
A=4x-x2+3
B=x-x2
N=2x-2x2-5
chứng tỏ các bất phương trình sau luôn nghiệm đungs với mọi x
x2 - 4x+5>0
chứng minh rằng -x2+4x-10/x2+1<0 với mọi x
tìm x để biểu thức x2-4x+5 đạt giá trị nhỏ nhất
tìm x để biểu thức -x2+4x+4 đạt giá trị lớn nhất
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
Tìm giá trị lớn nhất của đa thức: A = 4x – x 2 + 3
Ta có: A = 4x – x 2 + 3
= 7 – x 2 + 4x – 4
= 7 – ( x 2 – 4x + 4)
= 7 – x - 2 2
Vì x - 2 2 ≥ 0 với mọi x nên A = 7 – x - 2 2 ≤ 7
Vậy giá trị của A lớn nhất là 7 khi x – 2 = 0 hay x = 2
Tìm giá trị nhỏ nhất của các đa thức :
a) Q = 2x2 - 6x
b) M = x2 + y2 - x + 6y +10
Làm ra từng bước giùm mk
a) \(Q=2\left(x^2-3x\right)\)
\(Q=2\left(x^2-2\times x\times\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Dấu bằng <=> \(x=\frac{3}{2}\)