Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Nguyễn Kim Ngân
Xem chi tiết
Dương Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 1 2023 lúc 0:10

Gọi d=ƯCLN(2n+1;2n^2-1)

=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d

=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d

=>n+1 chia hết cho d và 2n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau

Nguyễn Vũ Thu Hằng
Xem chi tiết
Darlingg🥝
29 tháng 12 2021 lúc 19:36

Gọi d là ƯCLN(2n+1, 3n+2)

Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d

=> 2(3n+2) - 3(2n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

cre: h 

Khách vãng lai đã xóa
Dương Đỗ Hoàng
30 tháng 10 2023 lúc 21:44

TÔI KO BIẾT

 

locdddd33
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 9:30

a: Gọi d=ƯCLN(2n+2;2n+3)

=>2n+3-2n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+2 và 2n+3 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+1;n+1)

=>2n+1 chia hết cho d và n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>2n+2-2n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

 

HT.Phong (9A5)
13 tháng 8 2023 lúc 9:34

a) Đặt d là ƯCLN(2n+2, 2n+3) 

\(2n+2\text{ ⋮ }d\) và \(2n+3\text{ ⋮ }d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)\text{ ⋮ }d\)

\(\Rightarrow2n+3-2n-2\text{ ⋮ }d\)

\(\Rightarrow1\text{ ⋮ }d\)

\(\Rightarrow d=1\)

Vậy 2n+2 và 2n+3 là cặp số nguyên tốc cùng nhau 

HT.Phong (9A5)
13 tháng 8 2023 lúc 9:42

b) Đặt d là ƯCLN(2n+1, n+1) 

\(2n+1\text{ ⋮ }d\) và \(n+1\text{ ⋮ }d\)

\(\Rightarrow2n+1\text{ ⋮ }d\) và \(2n+2\text{ ⋮ }d\)

\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)\text{ ⋮ }d\)

\(\Rightarrow2n+2-2n-1\text{ ⋮ }d\)

\(\Rightarrow1\text{ ⋮ }d\)

\(\Rightarrow d=1\)

Vậy 2n+1 và n+1 là cặp số nguyên tố cùng nhau 

c) Đặt d là ƯCLN(n+1, 3n+4) 

\(n+1\text{ ⋮ }d\) và \(3n+4\text{ ⋮ }d\)

\(\Rightarrow3n+3\text{ ⋮ }d\) và \(3n+4\text{ ⋮ }d\)

\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)\text{ ⋮ }d\)

\(\Rightarrow3n+4-3n-3\text{ ⋮ }d\)

\(\Rightarrow1\text{ ⋮ }d\)

Vậy n+1 và 3n+4 là cặp số nguyên tốc cùng nhau 

Minh Nguyệt
Xem chi tiết
Cậu Bé Ngu Ngơ
21 tháng 12 2017 lúc 8:38

Gọi \(d\)là ước chung lớn nhất của 2n+1 và 6n+4(\(d\in\)N*)

Khi đó \(\hept{\begin{cases}2n+1⋮d\\6n+4⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3\cdot\left(2n+1\right)⋮d\\6n+4⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

\(\Leftrightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=1\)(Vì \(d\in\)N*)

\(\Rightarrowđpcm\)

Vũ Thị Thanh
25 tháng 3 2021 lúc 19:47

amazing goodjob

Khách vãng lai đã xóa
Nguyễn Vũ Thu Hằng
Xem chi tiết
Lê Song Phương
29 tháng 12 2021 lúc 19:29

Đặt \(ƯCLN\left(2n+1,3n+2\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)\(\Rightarrow1⋮d\)

Mà \(d\inℕ^∗\)\(\Rightarrow d=1\)

Từ đó \(ƯCLN\left(2n+1,3n+2\right)=1\)

Và ta kết luận với mọi \(n\inℕ\)thì \(2n+1\)và \(3n+2\)nguyên tố cùng nhau.

Khách vãng lai đã xóa
Việt Anh v2
29 tháng 12 2021 lúc 19:28

Ta có 2n+1 =6n+3

3n+2=6n+4

gọi d là ước của 6n+3 và 6n+4

Ta có (6n+3)-(6n+4) chia hết cho d

=> 1 chia hết cho d

=> d=1

vậy 2n+1 and n+2 là 2 số nguyên tố cùng nhau

Khách vãng lai đã xóa
Võ Lê Bảo Ngọc
Xem chi tiết
Minh Hiếu
16 tháng 9 2023 lúc 15:06

Đề sai nha e

VD: n=1

=> 2n+5=7; 2n+12=14

 

Võ Lê Bảo Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 9 2023 lúc 15:43

Đề sai rồi bạn

Lê Thị Trà My
Xem chi tiết
shitbo
16 tháng 11 2020 lúc 21:08

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

Khách vãng lai đã xóa