a: Gọi d=ƯCLN(2n+2;2n+3)
=>2n+3-2n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+2 và 2n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+1;n+1)
=>2n+1 chia hết cho d và n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>2n+2-2n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
a) Đặt d là ƯCLN(2n+2, 2n+3)
\(2n+2\text{ ⋮ }d\) và \(2n+3\text{ ⋮ }d\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)\text{ ⋮ }d\)
\(\Rightarrow2n+3-2n-2\text{ ⋮ }d\)
\(\Rightarrow1\text{ ⋮ }d\)
\(\Rightarrow d=1\)
Vậy 2n+2 và 2n+3 là cặp số nguyên tốc cùng nhau
b) Đặt d là ƯCLN(2n+1, n+1)
\(2n+1\text{ ⋮ }d\) và \(n+1\text{ ⋮ }d\)
\(\Rightarrow2n+1\text{ ⋮ }d\) và \(2n+2\text{ ⋮ }d\)
\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)\text{ ⋮ }d\)
\(\Rightarrow2n+2-2n-1\text{ ⋮ }d\)
\(\Rightarrow1\text{ ⋮ }d\)
\(\Rightarrow d=1\)
Vậy 2n+1 và n+1 là cặp số nguyên tố cùng nhau
c) Đặt d là ƯCLN(n+1, 3n+4)
\(n+1\text{ ⋮ }d\) và \(3n+4\text{ ⋮ }d\)
\(\Rightarrow3n+3\text{ ⋮ }d\) và \(3n+4\text{ ⋮ }d\)
\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)\text{ ⋮ }d\)
\(\Rightarrow3n+4-3n-3\text{ ⋮ }d\)
\(\Rightarrow1\text{ ⋮ }d\)
Vậy n+1 và 3n+4 là cặp số nguyên tốc cùng nhau