X =\(7-2\sqrt{6}\)
( giải cái này ra hằng đẳng thức )
giúp mình làm cái này đc ko ạ, mình ko phân biệt đc hằng đẳng thức 4/5 và 6/7
1: \(\left(x+1\right)^3=x^3+3x^2+3x+1\)
2: \(\left(x-1\right)^3=x^3-3x^2+3x-1\)
3: \(x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)
4: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
5: \(\left(x+2\right)^3=x^3+6x^2+12x+8\)
\(\sqrt[3]{15\sqrt{3}-26}\) mn ơi giúp mình phân tích chi tiết cái này thành hằng đẳng thức số 4, mình cảm ơn ạ!
\(\sqrt[3]{15\sqrt{3}-26}=\sqrt[3]{-\left(26-15\sqrt{3}\right)}\)
\(=-\sqrt[3]{8-3\cdot2^2\cdot\sqrt{3}+3\cdot2\cdot3-3\sqrt{3}}\)
\(=-\sqrt[3]{\left(2-\sqrt{3}\right)^3}=-\left(2-\sqrt{3}\right)=-2+\sqrt{3}\)
Các bạn hãy cho mình biết xy( 2xy - 6 ) + 3 ( 2xy - 6 ) = ?
------------các bạn hãy áp dụng hằng đẳng thức để làm BT này -----------------------------
cho biết 7 hằng đẳng thức đáng nhớ lớp 8 ?
giải phương trình vô tỉ bằng các pp sau
1. đưa về tích
\(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
2.hằng đẳng thức
\(2x^2+2x+1=\sqrt{4x+1}\)
3.đặt ẩn phụ
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=\frac{x+3}{2}\)
1. \(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}-3\sqrt{x+3}-2\sqrt{x+7}+6=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+7}-3\right)-2\left(\sqrt{x+7}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+7}-3\right)\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}-3=0\\\sqrt{x+3}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}=3\\\sqrt{x+3}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy...
2. \(2x^2+2x+1=\sqrt{4x+1}\)
\(\Leftrightarrow2x^2+2x+1-\sqrt{4x+1}=0\)
\(\Leftrightarrow4x^2+4x+2-2\sqrt{4x+1}=0\)
\(\Leftrightarrow4x+1-2\sqrt{4x+1}+1+4x^2=0\)
\(\Leftrightarrow\left(\sqrt{4x+1}-1\right)^2+4x^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+1}=1\\2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x+1=1\\x=0\end{matrix}\right.\)\(\Leftrightarrow x=0\)
Vậy...
3. \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}=\frac{x+3}{2}\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1=\frac{x+3}{2}\)
Đặt \(\sqrt{x-1}=a\)
\(\Leftrightarrow x-1=a^2\Leftrightarrow x+3=a^2+4\)
\(pt\Leftrightarrow\left|a-1\right|+a+1=\frac{a^2+4}{2}\)
+) Xét \(a\le1\Leftrightarrow a-1\le0\Leftrightarrow1\le x\le2\)
\(pt\Leftrightarrow1-a+a+1=\frac{a^2+4}{2}\)
\(\Leftrightarrow2=\frac{a^2+4}{2}\)
\(\Leftrightarrow a^2+4=4\)
\(\Leftrightarrow a=0\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x=1\) ( thỏa )
+) Xét \(a\ge1\Leftrightarrow a-1\ge0\Leftrightarrow x>2\)
\(pt\Leftrightarrow a-1+a+1=\frac{a^2+3}{2}\)
\(\Leftrightarrow2a=\frac{a^2+3}{2}\)
\(\Leftrightarrow a^2+3=4a\)
\(\Leftrightarrow a^2-4a+3=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(loai\right)\\x=10\left(thoa\right)\end{matrix}\right.\)
Vậy...
tìm Max
E = x + \(\sqrt{5-x^2}\) với -\(\sqrt{5}\) bé hơn hoặc bằng x bé hơn hoặc bằng \(\sqrt{5}\)
mn giúp mình cái này với bất đẳng thức bunhia cốp xki , mình cảm ơn ạ! ( mn nhớ giải thích trước khi áp dụng nhé)
Sử dụng hằng đẳng thức \(\sqrt{A^2}\)= \(\)IAI để giải pt:
a) \(\sqrt{9-12x+4x^2}\)= 4 + x
b) \(\sqrt{4-4x+x^2}\)= ( x - 1 )2 + x - 6
a) \(\sqrt{9-12x+4x^2}=4+x\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4+x\)
\(\Leftrightarrow\left|3-2x\right|=4+x\)
th1: \(3-2x\ge0\Leftrightarrow2x\le3\Leftrightarrow\Leftrightarrow x\le\dfrac{3}{2}\)
\(\Rightarrow\left|3-2x\right|=4+x\Leftrightarrow3-2x=4+x\Leftrightarrow3x=-1\Leftrightarrow x=\dfrac{-1}{3}\left(tmđk\right)\)
th2: \(3-2x< 0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)
\(\Rightarrow\left|3-2x\right|=4+x\Leftrightarrow2x-3=4+x\Leftrightarrow x=7\left(tmđk\right)\)
vậy \(x=\dfrac{-1}{3};x=7\)
b) \(\sqrt{4-4x+x^2}=\left(x-1\right)^2+x-6\)
\(\Leftrightarrow\sqrt{\left(2-x\right)^2}=x^2-2x+1+x-6\)
\(\Leftrightarrow\left|2-x\right|=x^2-x-5\)
th1: \(2-x\ge0\Leftrightarrow x\le2\)
\(\Rightarrow\left|2-x\right|=x^2-x-5\Leftrightarrow2-x=x^2-x-5\)
\(\Leftrightarrow x^2=7\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{7}\left(loại\right)\\x=-\sqrt{7}\left(tmđk\right)\end{matrix}\right.\)
th2: \(2-x< 0\Leftrightarrow x>2\)
\(\Rightarrow\left|2-x\right|=x^2-x-5\Leftrightarrow x-2=x^2-x-5\)
\(\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(tmđk\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
vậy \(x=-\sqrt{7};x=3\)
a) \(\sqrt{9-12x+4x^2}=4+x\)
\(\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4+x\)
\(\Leftrightarrow\left|3-2x\right|=4+x\)
\(\Leftrightarrow\left[{}\begin{matrix}3-2x=4+x\\3-2x=-4-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=7\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{1}{3};x_2=7\).
b) \(\sqrt{4-4x+x^2}=\left(x-1\right)^2+x-6\)
\(\Leftrightarrow\sqrt{\left(2-x\right)^2}=x^2-2x+1+x-6\)
\(\Leftrightarrow\left|2-x\right|=x^2-x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=x^2-x-5\\2-x=-x^2+x+5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=7\\x^2=2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\left(l\right)\\x=-\sqrt{7}\\x=3\\x=-1\left(l\right)\end{matrix}\right.\)
Vậy \(x_1=-\sqrt{7};x_2=3\).
Giải thích hộ mk chỗ (*)này:
\(x^6-y^6=\left(x^2\right)^3-\left(y^2\right)^3\)
\(=\left(x^2-y^2\right)[\left(x^2\right)^2+xy+\left(y^2\right)^2]\)(Đây là hằng đẳng thức số 7)
=\(\left(x^2-y^2\right)\left(x^4+xy+y^4\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^4+y^4+xy\right)\)(Bước này khai triển hằng đẳng thức số 3 trong(x^2-y^2)
\(=\left(x^2+y^2\right)^2-2x^2y^2+x^2y^2\)(*)(Chỗ này giải thích hộ mk với)
\(=\left(x^2+y^2\right)^2-\left(xy\right)^2=\left(x^2+xy+y^2\right)\left(x^2+y^2-xy\right)\)(Đây là hằng đẳng thức số 3)
Vậy giúp mk nha, cảm ơn trước!
Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng
x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)
Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.
Triển khai biểu thức theo hằng đẳng thức
(\(\sqrt{x}\)-6) (6 + \(\sqrt{x}\))
(2\(\sqrt{x}\)+1) (2\(\sqrt{x}\)-1)
\(a,\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)\)
\(\sqrt{x}^2-6^2\)
\(x-36\)
\(b,\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\)
\(\left(2\sqrt{x}\right)^2-1\)
\(4x-1\)
\(\left(\sqrt{x}-6\right)\left(6+\sqrt{x}\right)\)
\(=\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)\)
\(=\left(\sqrt{x}\right)^2-6^2\)
\(=x-36\)
b.\(\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\)
\(=\left(2\sqrt{x}\right)^2-1^2\)
\(=4x-1\)
Trả lời:
a, \(\left(\sqrt{x}-6\right)\left(6+\sqrt{x}\right)=\left(\sqrt{x}\right)^2-6^2=x-36\)
b, \(\left(2\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)=\left(2\sqrt{x}\right)^2-1^2=4x-1\)
bài 5 sử dụng hằng đẳng thức bình phương một tổng ( hiệu) để khai phương
a)\(\sqrt{7+4\sqrt{3}}\)
b)\(\sqrt{8-2\sqrt{12}}\)
c)\(\sqrt{21+6\sqrt{6}}\)
d)\(\sqrt{15-6\sqrt{6}}\)
e)\(\sqrt{29-12\sqrt{5}}\)
g)\(\sqrt{41+12\sqrt{5}}\)
\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)
\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)
\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)
\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)
\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)