Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anhh Vann
Xem chi tiết
Nguyễn thành Đạt
27 tháng 8 2023 lúc 9:59

Ta có : \(B\text{=}4x^2-12x+9\)

\(B\text{=}\left(2x-3\right)^2\)

Với \(x\text{=}\dfrac{1}{2}\)

\(\Rightarrow B\text{=}\left(2.\dfrac{1}{2}-3\right)^2\)

\(B\text{=}\left(-2\right)^2\text{=}4\)

Ta có : \(A\text{=}5\left(x+3\right)\left(x-3\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)

\(A\text{=}5\left(x^2-9\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)

\(A\text{=}5x^2-45+4x^2+12x+9+x^2-12x+36\)

\(A\text{=}10x^2\)

Với \(x\text{=}-\dfrac{1}{5}\)

\(\Rightarrow A\text{=}10.\left(-\dfrac{1}{5}\right)^2\text{=}\dfrac{2}{5}\)

Kiều Vũ Linh
27 tháng 8 2023 lúc 9:57

B = 4x² - 12x + 9

= (2x - 3)²

Tại x = 1/2 ta có:

B = (2.1/2 - 3)²

= (-2)²

= 4

-------------------

A = 5(x + 3)(x - 3) + (2x + 3)² + (x - 6)²

= 5x² - 45 + 4x² + 12x + 9 + x² - 12x + 36

= 10x²

Tại x = 1/5 ta có:

A = 10.(1/5)²

= 2/5

HT.Phong (9A5)
27 tháng 8 2023 lúc 9:57

\(B=4x^2-12x+9\)

\(B=\left(2x\right)^2-2\cdot2x\cdot3+3^2\)

\(B=\left(2x-3\right)^2\)

Thay \(x=\dfrac{1}{2}\) vào B ta có: 

\(B=\left(2\cdot\dfrac{1}{2}-3\right)^2=4\)

_______________________

\(A=5\left(x+3\right)\left(x-3\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)

\(A=5\left(x^2-9\right)+4x^2+12x+9+x^2-12x+36\)

\(A=5x^2-45+5x^2+45\)

\(A=10x^2\)

Thay \(x=\dfrac{1}{5}\)vào A ta có:

\(A=10\cdot\left(-\dfrac{1}{5}\right)^2=\dfrac{2}{5}\)

Hùng Chu
Xem chi tiết
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 7:07

\(a,ĐK\left(A\right):x\ne-\dfrac{3}{2};ĐK\left(B\right):x\ne-1;x\ne-3\\ b,A=\dfrac{-1+1}{2\left(-1\right)+3}=0\\ B=\dfrac{2\left(-\dfrac{2}{3}\right)+3}{1-\dfrac{2}{3}}+\dfrac{2-\dfrac{2}{3}}{3-\dfrac{2}{3}}=\dfrac{3-\dfrac{4}{3}}{\dfrac{1}{3}}+\dfrac{4}{3}:\dfrac{7}{3}=\dfrac{5}{3}:\dfrac{1}{3}+\dfrac{4}{7}=5+\dfrac{4}{7}=\dfrac{39}{7}\)

Nguyễn Trần Hoa Cương
Xem chi tiết

a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)

=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)

=>18x-12>=12x+12

=>6x>=24

=>x>=4

b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)

=>\(x^2+2x+1< x^2-2x+1\)

=>4x<0

=>x<0

c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì

\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)

=>\(2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

=>x<=4

Nguyên Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 10:56

a) Ta có: \(\left(x-1\right)\left(x-2\right)\left(x^2+x+1\right)\left(x^2+2x+4\right)-x^6+9x^3\)

\(=\left(x-1\right)\left(x^2+x+1\right)\left(x-2\right)\left(x^2+2x+4\right)-x^6+9x^3\)

\(=\left(x^3-1\right)\left(x^3-8\right)-x^6+9x^3\)

\(=x^6-9x^3+8-x^6+9x^3=8\)

b) Ta có: \(\left(\dfrac{1}{3}+2x\right)\left(\dfrac{1}{9}-\dfrac{2}{3}x+4x^2\right)-\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2}{3}x+\dfrac{1}{4}\right)\)

\(=\dfrac{1}{27}+8x^3-8x^3+\dfrac{1}{27}\)

\(=\dfrac{2}{27}\)

c) Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0

d) Ta có: \(\left(x^2-y^2\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)-x^6+y^6\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)-x^6+y^6\)

\(=\left(x^3-y^3\right)\left(x^3+y^3\right)-x^6+y^6\)

\(=x^6-y^6-x^6+y^6=0\)

Mạc Hoa Nhi
Xem chi tiết
Trang Nguyễn
19 tháng 5 2021 lúc 10:22

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

Nguyễn Lê Phước Thịnh
19 tháng 5 2021 lúc 10:53

a) Để M nhận giá trị nguyên thì \(8x+1⋮4x-1\)

\(\Leftrightarrow8x-2+3⋮4x-1\)

mà \(8x-2⋮4x-1\)

nên \(3⋮4x-1\)

\(\Leftrightarrow4x-1\inƯ\left(3\right)\)

\(\Leftrightarrow4x-1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow4x\in\left\{2;0;4;-2\right\}\)

\(\Leftrightarrow x\in\left\{\dfrac{1}{2};0;1;-\dfrac{1}{2}\right\}\)

mà x là số nguyên

nên \(x\in\left\{0;1\right\}\)

Vậy: \(x\in\left\{0;1\right\}\)

Nguyễn Thị Thu Hằng
Xem chi tiết
quách anh thư
3 tháng 3 2019 lúc 20:14

Alo đề nghị viết đề một cách chính xác 

Kim Khánh Linh
Xem chi tiết
Lê Đức Lương
17 tháng 5 2021 lúc 19:21

1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)

Thay \(x=\frac{1}{9}\) vào A ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)

2. \(B=...\)

    \(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

    \(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

     \(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{\sqrt{x}+3}{-6}\)

Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)

hay \(P\le-\frac{1}{2}\)

Dấu "=" xảy ra <=> x=0

Khách vãng lai đã xóa
BadCrush
17 tháng 5 2021 lúc 19:31

toán lớp 9 khó zậy em đọc k hỉu 1 phân số

Khách vãng lai đã xóa
Tuyết Ly
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
8 tháng 12 2021 lúc 16:10

a)B =  \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\left(ĐK:x\ne\pm3\right)\)

\(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{7x+3}{x^2-9}\)

\(\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-7x-3}{\left(x+3\right)\left(x-3\right)}\)

\(\dfrac{3x^2-9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x+3}\)

b) \(\left|2x+1\right|=7< =>\left[{}\begin{matrix}2x+1=7< =>x=3\left(L\right)\\2x+1=-7< =>x=-4\left(C\right)\end{matrix}\right.\)

Thay x = -4 vào B, ta có:

B = \(\dfrac{-4.3}{-4+3}=12\)

c) Để B = \(\dfrac{-3}{5}\)

<=> \(\dfrac{3x}{x+3}=\dfrac{-3}{5}< =>\dfrac{3x}{x+3}+\dfrac{3}{5}=0\)

<=> \(\dfrac{15x+3x+9}{5\left(x+3\right)}=0< =>x=\dfrac{-1}{2}\left(TM\right)\)

d) Để B nguyên <=> \(\dfrac{3x}{x+3}\) nguyên

<=> \(3-\dfrac{9}{x+3}\) nguyên <=> \(9⋮x+3\)

x+3-9-3-1139
x-12(C)-6(C)-4(C)-2(C)0(C)6(C)

 

25.Lê Ngọc Phan-8A
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 5 2022 lúc 12:26

1:

ĐKXĐ: \(x\notin\left\{3;-2;1\right\}\)

 \(A=\left(\dfrac{x\left(x+2\right)-x+1}{\left(x-3\right)\left(x+2\right)}\right):\left(\dfrac{x\left(x-3\right)+5x+1}{\left(x+2\right)\left(x-3\right)}\right)\)

\(=\dfrac{x^2+2x-x+1}{\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(x+2\right)\left(x-3\right)}{x^2-3x+5x+1}\)

\(=\dfrac{x^2+x+1}{\left(x-1\right)^2}\)