Cho x=\(\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\)^10
cmr x chia hét cho 1024
cho \(x=\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\)
chứng minh x thuộc N* và x chia hết cho 1024
Chứng minh \(\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\) là số nguyên chia hết cho 1024.
Anh vào đây nhé, link này có bài của anh này, chúc anh học tốt !
cho \(x=\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\)
chứng minh: x\(\in\) N* và x\(⋮\) 1024
Ta có \(y=\frac{x}{4^5}=\left(\frac{3+\sqrt{5}}{2}\right)^{10}+\left(\frac{3-\sqrt{5}}{2}\right)^{10}\)
Đặt \(a=\frac{3+\sqrt{5}}{2}\); \(a=\frac{3-\sqrt{5}}{2}\Rightarrow\left\{{}\begin{matrix}ab=1\\a+b=3\end{matrix}\right.\)
Xét \(S_n=a^n+b^n\) (\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\) \(\Rightarrow S_n>0\) )
\(\Rightarrow S_0=2;\) \(S_1=3\);
Ta có \(S_1.S_n=\left(a+b\right)\left(a^n+b^n\right)=a^{n+1}+b^{n+1}+a.b^n+b.a^n\)
\(S_1S_n=a^{n+1}+b^{n+1}+a^{n-1}+b^{n-1}\) (do \(a=\frac{1}{b}\) và \(b=\frac{1}{a}\))
\(S_1S_n=S_{n+1}+S_{n-1}\)
\(\Rightarrow S_{n+1}=2S_n-S_{n-1}\)
Do \(S_0\) và \(S_1\) nguyên \(\Rightarrow S_n\) nguyên với mọi \(n\ge1\)
\(\Rightarrow S_n\) nguyên dương với mọi \(n\ge1\)
\(\Rightarrow y=S_{10}\in N\Rightarrow x=4^5.y=1024.y⋮1024\)
cho x=\(\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\).CMR x chia het cho 2^10
CMR
\(\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\) là một số nguyên chia hết cho 1024
Cho \(\xrightarrow[x->1]{lim}\dfrac{f\left(x\right)-10}{x-1}=5.\)
Tính \(\xrightarrow[x->1]{lim}\dfrac{f\left(x\right)-10}{\left(\sqrt{x}-1\right)\left(\sqrt{4f\left(x\right)+9}+3\right)}\)
cho \(lim_{x->1}\dfrac{f\left(x\right)-10}{x-1}=5\) tính giới hạn \(lim_{x->1}\dfrac{f\left(x\right)-10}{\left(\sqrt{x}-1\right)\left(\sqrt[]{4f\left(x\right)+9}+3\right)}\) bằng bao nhiêu ?
Chọn \(f\left(x\right)=5x+5\)
Khi đó: \(\lim\limits_{x\rightarrow1}\dfrac{5x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{20x+29}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{5\left(\sqrt{x}+1\right)}{\sqrt{20x+29}+3}=\dfrac{10}{7+3}=1\)
Bài 1:Cho \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}=5\) ,\(g\left(x\right)=\sqrt{f\left(x\right)+6}-2\sqrt[3]{f\left(x\right)-2}\)
Tính \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt{x}-1\right)g\left(x\right)}\)
Bài 2: Cho \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2ax^2+30}-bx-5}{x^3-3x+2}=c\left(a;b;c\in R\right)\)
Tính giá trị \(P=a^2+b^2+36c\)
Bài 3: Cho a;b là các số nguyên dương. Biết \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2+ax}+\sqrt[3]{8x^3+2bx^2+3}\right)=\dfrac{7}{3}\)
Tinh P= a+2b
Bài 4:Cho a,b,c thuộc R với a>0 thỏa mãn
\(c^2+a=2\) và \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{ax^2+bx}-cx\right)=-3\)
Tính P= a+b+5c
Bài 5:
Mấy câu này khó nên mong các bạn giúp mình với. Mai mình phải kiểm tra rồi
Mấy câu này bạn cần giải theo kiểu trắc nghiệm hay tự luận nhỉ?
Làm tự luận thì hơi tốn thời gian đấy (đi thi sẽ không bao giờ đủ thời gian đâu)
Câu 1:
Kiểm tra lại đề, \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt[]{x}-1\right)g\left(x\right)}\) hay một trong 2 giới hạn sau: \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{x}-1}{g\left(x\right)}\) hoặc \(\lim\limits_{x\rightarrow1}\dfrac{g\left(x\right)}{\sqrt[]{x}-1}\)
Vì đúng như đề của bạn thì \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt[]{x}-1\right)g\left(x\right)}=\dfrac{1}{0}=\infty\), cả \(g\left(x\right)\) lẫn \(\sqrt{x}-1\) đều tiến tới 0 khi x dần tới 1
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
6:ĐKXĐ: x>=0; x<>1/25
BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)
=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)
=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)
7:
ĐKXĐ: x>=0
BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)
=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)
=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)
=>\(-\sqrt{x}-2>=0\)(vô lý)
8:
ĐKXĐ: x>=0; x<>9/4
BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)
=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)
=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)
TH1: 9căn x-14>0 và 2căn x-3<0
=>căn x>14/9 và căn x<3/2
=>14/9<căn x<3/2
=>196/81<x<9/4
TH2: 9căn x-14<0 và 2căn x-3>0
=>căn x>3/2 hoặc căn x<14/9
mà 3/2<14/9
nên trường hợp này Loại
9:
ĐKXĐ: x>=0
\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)
=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)
=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)
=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)
10:
ĐKXĐ: x>=0; x<>1/49
\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)
=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)
=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)
=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)
TH1: 6căn x-1>0 và 7căn x-1>0
=>căn x>1/6 và căn x>1/7
=>căn x>1/6
=>x>1/36
TH2: 6căn x-1<0 và 7căn x-1<0
=>căn x<1/6 và căn x<1/7
=>căn x<1/7
=>0<=x<1/49