cho \(x=\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\)
chứng minh x thuộc N* và x chia hết cho 1024
cho x=\(\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\).CMR x chia het cho 2^10
CMR
\(\left(3+\sqrt{5}\right)^{10}+\left(3-\sqrt{5}\right)^{10}\) là một số nguyên chia hết cho 1024
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
a) Cho x = \(\frac{\sqrt[3]{10+6\sqrt{3}}\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)Tính giá trị biểu thức: A = \(\left(x^3-4x+1\right)^{2018}\)
b) Cho x = \(\sqrt[3]{7+5\sqrt{2}}-\frac{1}{\sqrt[3]{7+5\sqrt{2}}}\)Tính giá trị biểu thức: B = \(\left(x^3+3x-14\right)^{2018}\)
1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.
Cho \(x=\dfrac{3+\sqrt{5}}{2}\). Tình \(P=\left(10x^2-30x+11\right)^2+\dfrac{\left(2x^2-6x+3\right)^{10}}{x^5-3x^4+x^3-1}\)
\(Bài\) \(1\)\(Cho\)\(a,b,c\ge0;a+b+c=6.\)TÌm giá trị ngỏ nhất của biểu thức:
\(M=\sqrt{\left(a+1\right)^3}+\sqrt{\left(b+2\right)^3}+\sqrt{\left(c+2\right)^3}\)
Bài 2: \(Cho\)\(x=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\).Tính giá trị biểu thức:
\(A=\left(x^6-3x^5-8x^4+16x^3+25x^2-2x-3\right)^{2020}+2019\left(x^4-4x^3+x^2+6x-3\right)^{2021}\)
Bài 3: Giải các phương trình sau:
\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(A=\left(\sqrt{5}-\sqrt{2}\right)^2-\frac{9}{\sqrt{10}-1}+\sqrt{90}\)\(B=\sqrt{2}\left(3\sqrt{2}+\sqrt{3-\sqrt{5}}\right)-\sqrt{5}\)\(C=\left(\frac{5-\sqrt{5}}{\sqrt{5}-1}-\frac{\sqrt{5}+1}{5+\sqrt{5}}\right):\frac{\sqrt{5}+1}{\sqrt{5}}\)\(D=\frac{x\sqrt{y}-y\sqrt{x}+\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}:\frac{x+2\sqrt{xy}+y}{\left(\sqrt{x}+\sqrt{y}\right)^3\left(x+y\right)}vớix,y>0\)
TÍNH HOẶC RÚT GỌN