CMR:
3a-4c/3b-4d = 5a+6c/5b-6d
\(Cho\frac{a}{b}=\frac{c}{d}\)
\(CMinh\frac{3a-4c}{3b-4d}=\frac{5a-6c}{5b-6d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow\frac{3a-4c}{3b-4d}=\frac{3bk-4dk}{3b-4d}=\frac{k.\left(3b-4d\right)}{3b-4d}=k\)(1)
\(\frac{5a-6c}{5b-6d}=\frac{5bk-6dk}{5b-6d}=\frac{k.\left(5b-6d\right)}{5b-6d}=k\)(2)
Từ (1) và (2)
\(\Rightarrow\frac{3a-4c}{3b-4d}=\frac{5a-6c}{5b-6d}\)
đpcm
chứng minh rằng:
3a-4c/3v-4d = 5a+6c/5b+6d
ta có: \(\frac{3a-4c}{3b-4d}=\frac{3a}{3b}=\frac{4c}{4d}=\frac{a}{b}=\frac{c}{d}\)
\(\frac{5a+6c}{5b+6d}=\frac{5a}{5b}=\frac{6c}{6d}=\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{3a-4c}{3b-4d}=\frac{5a+6c}{5b+6d}\left(=\frac{a}{b}=\frac{c}{d}\right)\)
tự làm đi
Kiu ai làm cho hả???
_Người lạ lướt web_
BÀI 1: 1D - 2A - 3C - 4D - 5B - 6C - 7A
BÀI 2: 1B- 2A- 3B - 4B - 5D - 6C - 7A
BÀI 3; 1D - 2C - 3D- 4C - 5B - 6D - 7D - 8D - 9A - 10A - 11D - 12A
BÀI 4: 1D - 2A - 3C - 4A - 5B - 6D - 7A - 8B - 9B - 10A
BÀI 5: 1A - 2D - 3D - 4C - 5B - 6D - 7A
chứng minh
3a+4c/3b+4d=7a-6c/7b-6d
cho a/b=c/d chứng minh
(3a+6c)(7b-4d)=(3b+6d)(7a-4c)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a}{3b}=\dfrac{6c}{6d}=\dfrac{3a+6c}{3b+6d}\)(1)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{7a}{7b}=\dfrac{4c}{4d}=\dfrac{7a-4c}{7b-4d}\)(2)
Từ (1) và (2) suy ra \(\dfrac{3a+6c}{3b+6d}=\dfrac{7a-4c}{7b-4d}\)
\(\Leftrightarrow\left(3a+6c\right)\left(7b-4d\right)=\left(3b+6d\right)\left(7a-4c\right)\)
cho a^2 -b^2 =4c^2 cmr (5a-3b+8c) (5a-3b-8c)=(3a-5b)^2
cho a^2-b^2=4c^2 .CMR:
(5a-3b+8c)(5a-3b-8c)=(3a-5b)^2
GIẢI NHANH GIÚP NHA CẦN GẤP
VT := [(5a - 3b) + 8c][(5a - 3b) - 8c]
= (5a - 3b)^2 - 64c^2 (theo hiệu hai bình phương)
= 25a^2 - 30ab + 9b^2 - 64c^2 (theo bình phương của hiệu)
= 25a^2 - 30ab + 9b^2 - 16(a^2 - b^2) (vì 4c^2 = a^2 - b^2)
= 9a^2 - 30ab + 25b^2
= (3a - 5b)^2 (theo bình phương của hiệu).
Cho a2-b2=4C2. CMR :
(5a-3b+8c) (5a-3b-8c)=(3a-5b)2
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=25a^2-30ab+9b^2-16c^2\)
\(=25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)
\(=25a^2-30ab+9b^2-16c^2+16b^2\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2\)
Cho \(a^2-b^2=4c^2\).CMR : ( 5a - 3b + 8c ) (5a-3b-8c) = ( 3a - 5b )\(^2\)
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)
\(\Leftrightarrow\left(5a-3b\right)^2-64c^2-\left(3a-5b\right)^2=0\)
\(\Leftrightarrow\left(5a-3b-3a+5b\right)\left(5a-3b+3a-5b\right)=64c^2\)
\(\Leftrightarrow\left(2a+2b\right)\left(8a-8b\right)=16\left(a^2-b^2\right)\)
\(\Leftrightarrow16\left(a^2-b^2\right)=16\left(a^2-b^2\right)\left(true\right)\)
Vậy \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)khi \(a^2-b^2=4c^2\)