Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Độc Bước
Xem chi tiết
Luyện Thanh Mai
Xem chi tiết
Yến Nhi Lê
21 tháng 1 2021 lúc 19:44

undefined

Trương Huy Hoàng
21 tháng 1 2021 lúc 22:30

Bổ sung phần c và d luôn:

c, C = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) 5(x2 - 1) = 2(2x2 + 3)

\(\Leftrightarrow\) 5x2 - 5 = 4x2 + 6

\(\Leftrightarrow\) x2 = 11

\(\Leftrightarrow\) x2 - 11 = 0

\(\Leftrightarrow\) (x - \(\sqrt{11}\))(x + \(\sqrt{11}\)) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\sqrt{11}\left(TM\right)\\x=-\sqrt{11}\left(TM\right)\end{matrix}\right.\)

d, Ta có: \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{x^2+\dfrac{3}{2}-\dfrac{5}{2}}{2\left(x^2+\dfrac{3}{2}\right)}\) = \(\dfrac{1}{2}\) - \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\)

C nguyên \(\Leftrightarrow\) \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\) nguyên \(\Leftrightarrow\) 5 \(⋮\) 4(x2 + \(\dfrac{3}{2}\))

\(\Leftrightarrow\) 4(x2 + \(\dfrac{3}{2}\)\(\in\) Ư(5)

Xét các TH:

4(x2 + \(\dfrac{3}{2}\)) = 5 \(\Leftrightarrow\) x2 = \(\dfrac{-1}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{1}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -5 \(\Leftrightarrow\) x2 = \(\dfrac{-11}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{11}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = 1 \(\Leftrightarrow\) x2 = \(\dfrac{-5}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{5}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -1 \(\Leftrightarrow\) x2 = \(\dfrac{-7}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm)

Vậy không có giá trị nào của x \(\in\) Z thỏa mãn C \(\in\) Z

Chúc bn học tốt! (Ko bt đề sai hay ko nữa :v)

Luyện Thanh Mai
Xem chi tiết
Ngọc Thúy Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2023 lúc 20:36

a: \(A=\dfrac{-\left(x+2\right)^2-2x\left(x-2\right)-4x^2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x-3\right)}{\left(x-3\right)^2}\)

\(=\dfrac{-x^2-4x-4-2x^2+4x-4x^2}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}\)

\(=\dfrac{-7x^2-4}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}=\dfrac{7x^2+4}{\left(x+2\right)\left(x-3\right)}\)

b: Khi x=1/3 thì \(A=\dfrac{7\cdot\dfrac{1}{9}+4}{\left(\dfrac{1}{3}-2\right)\left(\dfrac{1}{3}-3\right)}=\dfrac{43}{40}\)

Oriana.su
Xem chi tiết
Yeutoanhoc
11 tháng 7 2021 lúc 20:08

a)ĐKXĐ:\(\begin{cases}x\ge0\\2\sqrt{x}-2\ne0\\1-x\ne0\\\end{cases}\)

`<=>` \(\begin{cases}x\ge0\\x\ne1\\\end{cases}\)

`B=1/(2sqrtx-2)-1/(2sqrtx+2)+sqrtx/(1-x)`

`=1/(2(sqrtx-1))-1/(2(sqrtx+1))-sqrtx/(x-1)`

`=(sqrtx+1-(sqrtx-1)-2sqrtx)/(2(sqrtx-1)(sqrtx+1))`

`=(2-2sqrtx)/(2(sqrtx-1)(sqrtx+1))`

`=(2(1-sqrtx))/(2(sqrtx-1)(sqrtx+1))`

`=-1/(sqrtx+1)`

`b)x=3`

`=>B=(-1)/(sqrt3+1)`

`=(-(sqrt3-1))/(3-1)`

`=(1-sqrt3)/2`

`c)|A|=1/2`

`<=>|(-1)/(sqrtx+1)|=1/2`

`<=>|1/(sqrtx+1)|=1/2`

`<=>1/(sqrtx+1)=1/2` do `1>0,sqrtx+1>=1>0`

`<=>sqrtx+1=2`

`<=>sqrtx=1`

`<=>x=1` loại vì `x ne 1`.

Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 20:13

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có: \(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)

\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-1}{\sqrt{x}+1}\)

b) Thay x=3 vào B, ta được:

\(B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{-\sqrt{3}+1}{2}\)

c) Ta có: \(\left|A\right|=\dfrac{1}{2}\)

nên \(\left[{}\begin{matrix}A=\dfrac{1}{2}\\A=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{\sqrt{x}+1}=\dfrac{1}{2}\\\dfrac{-1}{\sqrt{x}+1}=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=-2\\\sqrt{x}+1=2\end{matrix}\right.\Leftrightarrow x=1\)(loại)

Luyện Thanh Mai
Xem chi tiết
Duong Thi Nhuong TH Hoa...
Xem chi tiết
Trần Đình Thuyên
9 tháng 8 2017 lúc 13:32

sai dề kìa \(\frac{6x+3}{x^3+1}\)mới đúng        

ĐK :  \(x\ne-1\)

a) rút gọn được \(C=\frac{1}{x^2-x+1}\)

b)\(C=\frac{1}{3}\Rightarrow\frac{1}{x^2-x+1}=\frac{1}{3}\)

\(\Rightarrow x^2-x+1=3\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)=0\\\left(x-2\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\left(Loai\right)\\x=2\left(Nhan\right)\end{cases}}}\)

vậy khi \(C=\frac{1}{3}\)thì x=2

c)\(C=\frac{1}{x^2-x+2}\)

ta có  \(x^2-x+2=x^2-2x\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

\(\Rightarrow C=\frac{1}{\left(x-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{7}{4}\)

vậy max \(C=\frac{7}{4}\)khi và chỉ khi \(x=\frac{1}{2}\)

Lê Mai Tuyết Hoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2021 lúc 22:42

a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

\(C=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)

Mai Anh Nguyễn Thị
Xem chi tiết
Nguyễn Đức Trí
11 tháng 8 2023 lúc 23:04

\(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\left(1\right)\)

a) A xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)

\(\left(1\right)\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x+1}\)

b) Để \(A=-\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{x^2}{x+1}=-\dfrac{1}{2}\left(x\ne-1\right)\)

\(\Leftrightarrow2x^2=-\left(x+1\right)\)

\(\Leftrightarrow2x^2+x+1=0\)

\(\Delta=1-8=-7< 0\)

Nên phương trình trên vô nghiệm \(\left(x\in\varnothing\right)\)

c) Để \(A< 1\) 

\(\Leftrightarrow\dfrac{x^2}{x+1}< 1\)

\(\Leftrightarrow x^2< x+1\left(x\ne-1\right)\)

\(\Leftrightarrow x^2-x-1< 0\)

\(\Leftrightarrow x^2-x+\dfrac{1}{4}-\dfrac{1}{4}-1< 0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}< 0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2< \dfrac{5}{4}\)

\(\Leftrightarrow-\dfrac{\sqrt[]{5}}{2}< x-\dfrac{1}{2}< \dfrac{\sqrt[]{5}}{2}\)

\(\Leftrightarrow\dfrac{-\sqrt[]{5}+1}{2}< x< \dfrac{\sqrt[]{5}+1}{2}\)

d) Để A nguyên

\(\Leftrightarrow\dfrac{x^2}{x+1}\in Z\)

\(\Leftrightarrow x^2⋮x+1\)

\(\Leftrightarrow x^2-x\left(x+1\right)⋮x+1\)

\(\Leftrightarrow x^2-x^2+x⋮x+1\)

\(\Leftrightarrow x⋮x+1\)

\(\Leftrightarrow x-x-1⋮x+1\)

\(\Leftrightarrow-1⋮x+1\)

\(\Leftrightarrow x+1\in\left\{-1;1\right\}\)

\(\Leftrightarrow x\in\left\{-2;0\right\}\left(x\in Z\right)\)

System
11 tháng 8 2023 lúc 22:35

!ERROR 404!