Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Anh Tú
Xem chi tiết
Moon Moon
Xem chi tiết
Tưởng Y Y
Xem chi tiết
Trần Hoàng Minh
3 tháng 4 2018 lúc 19:47

\(x+2x+3x+...+2011x=2012.1013\)

\(\dfrac{2011\left(2011+1\right)}{2}x=2012.2013\)

\(x=2012.2013.\dfrac{2}{2011.2012}\)

\(x=\dfrac{4026}{2011}\)

Trần Hoàng Minh
3 tháng 4 2018 lúc 19:47

b thì chịu

Vũ Thị Nhung
Xem chi tiết
Nguyen Thi Huyen
8 tháng 3 2018 lúc 11:54

a) \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)

\(\Rightarrow\)\(2^x+2^x.2+2^x.2^2+2^x.2^3=480\)

\(\Leftrightarrow\)\(2^x\left(1+2+2^2+2^3\right)=480\)

\(\Leftrightarrow\)\(2^x\left(1+2+4+8\right)=480\)

\(\Leftrightarrow\)\(2^x.15=480\)

\(\Rightarrow\)\(2^x=480:15\)

\(\Leftrightarrow2^x=32\)

\(\Rightarrow2^x=2^5\)

\(\Rightarrow x=5\)

Vậy x = 5.

Đoàn Phương Linh
Xem chi tiết
Trần Thị Hương Lan
Xem chi tiết
Lê Bùi
20 tháng 4 2018 lúc 10:17

\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)

\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)

\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)

\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)

\(2A=2+3+4+5+6+...+2012+2013+2014\)

\(2A=\dfrac{\left(2+2014\right).2013}{2}\)

\(A=\dfrac{2016.2013}{4}=504.2013\)

Lê Bùi
20 tháng 4 2018 lúc 10:40

\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)

\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)

\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)

\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)

\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)

\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)

\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)

\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)

Tưởng Y Y
Xem chi tiết
๖ۣۜĐặng♥๖ۣۜQuý
3 tháng 2 2018 lúc 20:12

a)

\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\\ \Leftrightarrow2^x.1+2^x.2+2^x.2^2+2^x.2^3=120\\ \Leftrightarrow2^x\left(1+2+2^2+2^3\right)=120\\ \Leftrightarrow2^x=8=2^3\\ \Rightarrow x=3\)

๖ۣۜĐặng♥๖ۣۜQuý
3 tháng 2 2018 lúc 20:16

b)

\(\dfrac{x+4}{2011}+\dfrac{x+3}{2012}=\dfrac{x+2}{2013}+\dfrac{x+1}{2014}\\ \Leftrightarrow\dfrac{x+4}{2011}+1+\dfrac{x+3}{2012}+1=\dfrac{x+2}{2013}+1+\dfrac{x+1}{2014}+1\\ \Leftrightarrow\dfrac{x+2015}{2011}+\dfrac{x+2015}{2012}=\dfrac{x+2015}{2013}+\dfrac{x+2015}{2014}\\ \Leftrightarrow\left(x+2015\right).\dfrac{1}{2011}+\left(x+2015\right).\dfrac{1}{2012}-\left(x+2015\right).\dfrac{1}{2013}-\left(x+2015\right).\dfrac{1}{2014}=0\\ \Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2013}-\dfrac{1}{2014}\right)=0\\ \Rightarrow x+2015=0\Leftrightarrow x=-2015\)

nguyển văn hải
3 tháng 2 2018 lúc 21:18

đề câu b thiếu à bn

Thanh Tu Nguyen
Xem chi tiết
⭐Hannie⭐
21 tháng 3 2023 lúc 22:04

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\Rightarrow\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)

\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)

`=> (x+2014) (1/2010 + 1/2011-1/2012-1/2013)=0`

`=> x+2014=0` ( vì `1/2010 + 1/2011-1/2012-1/2013≠0 )`

`=>x=-2014`

 

Trà My Nguyễn Thị
Xem chi tiết
Yukru
23 tháng 8 2018 lúc 19:55

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}+...+\dfrac{x-2012}{2}=2012\)

\(\Rightarrow\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}+...+\dfrac{x-2012}{2}-2012=0\)

\(\Rightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1+...+\dfrac{x-2012}{2}-1=0\)

\(\Rightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}+...+\dfrac{x-2014}{2}=0\)

\(\Rightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}+...+\dfrac{1}{2}\right)=0\)

\(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}+...+\dfrac{1}{2}\ne0\)

\(\Rightarrow x-2014=0\)

\(\Rightarrow x=2014\)