Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lâm Phúc
Xem chi tiết
Đào Ngọc Lâm
Xem chi tiết
Nguyễn An Ninh
20 tháng 5 2023 lúc 8:00

\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

\(B=\dfrac{1}{2.2}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)

\(B=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{100}\)

\(B=0+0+...+0\)

\(B=0\)

 

Trần Thị Tâm Như
20 tháng 5 2023 lúc 9:28

�=12.2+14.4+...+1100.100

�=12−12+14−14+...+1100−1100

�=0+0+...+0

�=0

Đào Ngọc Lâm
1 tháng 7 2023 lúc 23:00

bạn sao chép của người bạn Ninh mà

 

Nguyễn Hà Linh
Xem chi tiết
dong duc dung
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 21:12

a:

Số số hạng trong dãy M là:

(1002-12):10+1=100(số)

=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10

\(M=1002-992+982-972+...+22-12\)

\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)

\(=10+10+...+10\)

=10*50=500

b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)

\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)

=10+10+...+10

=10*10=100

Earth-K-391
Xem chi tiết
boy not girl
8 tháng 5 2021 lúc 16:45

fan bé sans à

IamnotThanhTrung
8 tháng 5 2021 lúc 16:47

wuttttt

Đoàn Đạt
8 tháng 5 2021 lúc 16:49

undefined

Nguyen Van Nam
Xem chi tiết
Nguyen Van Nam
Xem chi tiết
Nguyễn Tú Hà
Xem chi tiết
HT.Phong (9A5)
22 tháng 6 2023 lúc 10:13

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

Đỗ Nam Trâm
Xem chi tiết
Bùi Võ Đức Trọng
19 tháng 7 2021 lúc 15:29

ủa bạn ơi, lớn hơn 1/2 hay bé hơn 1/2 vậy bạn

 

Trần Lê Nhật Minh
Xem chi tiết

A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + .....+ \(\dfrac{1}{1002^2}\)

A = \(\dfrac{1}{2^2.1^2}\) + \(\dfrac{1}{2^2.2^2}\) + \(\dfrac{1}{2^2.3^2}\)+......+\(\dfrac{1}{2^2.501^2}\)

A = \(\dfrac{1}{2^2}\) \(\times\)\(1\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.......+ \(\dfrac{1}{501^2}\))

ta có : \(\dfrac{1}{2^2}\)   < \(\dfrac{1}{1.2}\)

           \(\dfrac{1}{3^2}\)   < \(\dfrac{1}{2.3}\)

          ................

         \(\dfrac{1}{501^2}\) < \(\dfrac{1}{500.501}\)

Cộng vế với vế ta được

           \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) +.....+ \(\dfrac{1}{501^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{500.501}\)

           \(\dfrac{1}{2^2}\) +  \(\dfrac{1}{3^2}\) +.....+ \(\dfrac{1}{501^2}\) < \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}-\dfrac{1}{3}\)+.....+ \(\dfrac{1}{500}-\dfrac{1}{501}\)

            \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+......+ \(\dfrac{1}{501^2}\) < 1 - \(\dfrac{1}{501}\) < 1 

   =>A = \(\dfrac{1}{4}\) \(\times\) ( 1 + \(\dfrac{1}{2^2}\)\(\dfrac{1}{3^2}\)+.....+\(\dfrac{1}{501^2}\)) < \(\dfrac{1}{4}\) \(\times\)(1 + 1)

    A <  \(\dfrac{1}{4}\)  \(\times\) 2

    A < \(\dfrac{1}{2}\)