ủa bạn ơi, lớn hơn 1/2 hay bé hơn 1/2 vậy bạn
ủa bạn ơi, lớn hơn 1/2 hay bé hơn 1/2 vậy bạn
Chứng Minh Rằng :A=\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{1002^2}\)<\(\dfrac{1}{2}\)
CHứng minh rằng 1 + \(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2^{1999}}>1000\)
chứng minh rằng:\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...........+<1
\(\dfrac{1}{41}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{43}\)+..........+\(\dfrac{1}{80}\)>\(\dfrac{7}{12}\)
chứng minh rằng : \(\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}\)
Chứng minh rằng \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
Bài 7:
Chứng minh rằng: \(\dfrac{3}{10}< \dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}.\)
chứng minh rằng: \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}< \dfrac{1}{50}\)
Chứng minh rằng:
\(\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{99^2}< \dfrac{5}{18}\)
\(S=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\) Chứng minh rằng \(S< \dfrac{1}{2}\)