chứng minh rằng
\(\dfrac{1}{1000}+\dfrac{1}{1002}+\dfrac{1}{1004}+...+\dfrac{1}{2000}< \dfrac{1}{2}\)
Bài 7:
Chứng minh rằng: \(\dfrac{3}{10}< \dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{2}.\)
Chứng Minh Rằng : A= \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{100^2}\) <\(\dfrac{3}{4}\)
chứng minh rằng : \(\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}\)
chứng minh rằng:\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...........+<1
\(\dfrac{1}{41}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{43}\)+..........+\(\dfrac{1}{80}\)>\(\dfrac{7}{12}\)
chứng minh rằng :\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
Chứng minh rằng:
\(\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{99^2}< \dfrac{5}{18}\)
S = \(\dfrac{1}{1^2}\) +\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+....+\(\dfrac{1}{50^2}\). Chứng minh rằng S < 2
B=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\). Chứng minh rằng B<1