Bài 1
(3x-4)(x-2)3x (x-9 )-3
Bài 1: Thu gọn :
(x+1).(x+2)-3x.(x-4)
Bài 2: Tìm x:
(3x-4).(x-2)=3x.(x-9)
Bài 3: Chứng minh biểu thức không phụ thuộc vào giá trị của biến:
-3x.(x-4).(x-2)-x^2.(-3x+18)+24x-25
1) \(\left(x+1\right)\left(x+2\right)-3x\left(x-4\right)=x^2+3x+2-3x^2+12x=-2x^2+15x+2\)
2) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)\)
\(\Leftrightarrow3x^2-10x+8=3x^2-27x\)
\(\Leftrightarrow17x=-8\Leftrightarrow x=-\dfrac{8}{17}\)
3) \(-3\left(x-4\right)\left(x-2\right)-x^2\left(-3x+18\right)+24x-25\)
\(=-3x^3+6x^2+12x^2-24x+3x^3-18x^2+24x-25=-25\)
Bài 1: Tính, rút gọn a) 2x. (x²-3x + 1) b) (x+2)²-x² c) (x+3)(x²-3x+9)-x³ d) (x+5)( 5-x) + 2x² e) (x-3)(x²+ 3x +9)-x (x-4)(x+4) Bài 2: Viết thành lũy thừa a) y² + 8y + 16 b) 10x - 25-x² c) -x³ + 3x²-3x + 1
a: \(2x\left(x^2-3x+1\right)=2x^3-6x^2+2x\)
b: \(\left(x+2\right)^2-x^2=4x+4\)
c: \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=27\)
Bài 2: (2 điểm) Tìm x, biết:
a) (3x + 4)2 – (3x – 1)(3x + 1) = 49
b) x2 – 4x + 4 = 9(x – 2)
c) x2 – 25 = 3x - 15
d) (x – 1)3 + 3(x + 1)2 = (x2 – 2x + 4)(x + 2)
a) \(\Rightarrow9x^2+24x+16-9x^2+1=49\)
\(\Rightarrow24x=32\Rightarrow x=\dfrac{4}{3}\)
b) \(\Rightarrow x^2-13x+22=0\)
\(\Rightarrow\left(x-11\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=11\\x=2\end{matrix}\right.\)
c) \(\Rightarrow x^2-3x-10=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Bài 1:Thực hiện phép tính
a,(5-2x)(x+3)-4x(x+2) b,(3x+1)(x-3)-4(x+2)(x-2)
c,3(x-4)(x+3)+(x-5)(x+3) d,2x(x-4)+(3x-1)(2x-5)
Bài 2:Tìm x biết
a,5x(x+3)-(5x+2)(x+3)=7
b,(3x-1)(3x+2)-9(x+2)(x-2)=10
c,(x+1)(2x-5)+2(3-x)(x+2)=7
d,(1-3x)(x+2)+3x(x-5)=8
Bài 3: Tìm x, biết:
a)(3x-5)(5-3x)+9(x+1)2=30
b)(x+4)2-(x+1)(x-1)=16
b. (x + 4)2 - (x + 1)(x - 1) = 16
<=> x2 + 4x + 16 - (x2 - 1) = 16
<=> x2 + 4x + 16 - x2 + 1 - 16 = 0
<=> x2 - x2 + 4x = 16 - 16 - 1
<=> 4x = -1
<=> x = \(\dfrac{-1}{4}\)
\(a,\Leftrightarrow-9x^2+30x-25+9x^2+18x+9=30\\ \Leftrightarrow48x=46\\ \Leftrightarrow x=\dfrac{23}{24}\\ b,\Leftrightarrow x^2+8x+16-x^2+1=16\\ \Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\)
Bài 1: Tìm x:
1) (x-3)3 -( x-3)(x2+ 3x+9) +6( x+1)2+ 3x2 = -33
2) (X-3)( X2+ 3X+9) - X(X-2)( 2+X) = 1
3) (X+2)(X2 - 2X+4) – X(X-3)(X+3) = 26
a: Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=-33\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+1+3x^2=-33\)
\(\Leftrightarrow39x=-34\)
hay \(x=-\dfrac{34}{39}\)
b: Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-2\right)\left(x+2\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
\(\Leftrightarrow4x=28\)
hay x=7
c: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)
\(\Leftrightarrow x^3+8-x^3+9x=26\)
\(\Leftrightarrow x=2\)
Bài 1 tìm x
a) (3x+1)^2-9(x+2)^3=-5
b) 5x(12x+7)-(3x+1)(20x-5)=-100
Bài 2 chứng minh giá trị biểu thức ko thuộc vào biến
a)(x-7)(x+7)-(x-3)^2+2(5-3x)
b)(x+9)(x^3+27)-(x-3)^3 c)(3x+2)(9x^2-6x+4)-9(3x^3+1)
Bài 1: Rút gon
a) B=\(\left(\dfrac{x}{3x-9}+\dfrac{2x-3}{3x-x^2}\right).\dfrac{3x^2-9x}{x^2+6x+9}\)
b) A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{1}{x+2}\)
a) Ta có: \(B=\left(\dfrac{x}{3x-9}+\dfrac{2x-3}{3x-x^2}\right)\cdot\dfrac{3x^2-9x}{x^2+6x+9}\)
\(=\left(\dfrac{x}{3\left(x-3\right)}-\dfrac{2x-3}{x\left(x-3\right)}\right)\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)
\(=\left(\dfrac{x^2}{3x\left(x-3\right)}-\dfrac{3\left(2x-3\right)}{3x\left(x-3\right)}\right)\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)
\(=\dfrac{x^2-6x+9}{3x\left(x-3\right)}\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)
\(=\dfrac{x^2-6x+9}{x^2+6x+9}\)
b) Ta có: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{1}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{1}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{1}{x+2}\)
\(=\left(\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{1}{x+2}\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{1}\)
\(=\dfrac{-6}{x-2}\)
Bài 2: Tìm x, biết: a) (x+2)(x² -2x+4)-x(x²+2)=15 b) (x-2)³-(x-4)(x² + 4x+16) + 6(x+1)=49 c) (x - 1)³ + (2 - x)(4 + 2x + x²)+ 3x(x + 2) = 16 d) (x - 3)³ - (x - 3)(x² + 3x + 9) + 9(x + 1)² = 15
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)
Bài 3. Rút gọn các đa thức sau
a/ (2x-3)(4x^2+6x+9)- (2x+1)(4x^2 - 2x +1)
b/ (x+ 2)(x^2- 2x+4) – (x^3- 2)
c/ (3x+ 5)(9x^2 - 15x +25)- 3x(3x-1)(3x+1)
d/ x^6 - (x^2 + x +1)(x^2 - 1)(x^2 - x+ 1)
a/ 2x\(^{^{ }3}\)-3\(^{^{ }3}\)-2x\(^3\)-1\(^{^{ }3}\)=-28
b/x\(^{^{ }3}\)+2\(^{^{ }3}\)-x\(^3\)+2=10
c/3x\(^3\)+5\(^3\)-3x(3x\(^2\)-1)=3x\(^3\)+5\(^3\)-3x\(^3\)+3x=125+3x
d/ x\(^6\)-(x\(^3\)+1)(x\(^2\)-x+1)= x\(^6\)-(x\(^6\)-x\(^4\)+x\(^3\)+x\(^2\)-x+1)=x\(^4\)-x\(^3\)-x\(^2\)+x-1