Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Mai Văn
Xem chi tiết
Unruly Kid
3 tháng 3 2019 lúc 14:40

1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0

Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)\((x = -2 ; y = 3)\)

Unruly Kid
3 tháng 3 2019 lúc 14:44

\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)

\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))

Thay vào phương trình (2) giải dễ dàng.

Unruly Kid
3 tháng 3 2019 lúc 14:50

Điều kiện:\(9y^2+(2y+3)(y-x)\geq 0;xy\geq 0;-1\leq x\leq 1\)

Từ phương trình thứ nhất có \(x\geq 0\Rightarrow y\geq 0\)

Xét \(\left\{\begin{matrix} x=0\\ y=0 \end{matrix}\right.\) thỏa mãn hệ

Xét x,y không đồng thời bằng 0, ta có

\(\sqrt{9y^2+(2y+3)(y-x)}-3x+4\sqrt{xy}-4x=0\)

\(\Leftrightarrow \frac{9y^2+(2y+3)(y-x)-9x^2}{\sqrt{9y^2+(2y-3)(y-x)+3x}}+\frac{4(xy-x^2)}{\sqrt{xy}+x}=0\)

\(\Leftrightarrow (y-x)\left [ \frac{11y+9x+3}{\sqrt{11y^2+(2y-3)(y-x)+3x}}+\frac{4x}{\sqrt{xy}+x} \right ]=0\Leftrightarrow y=x\)

Tới đây thay vào phương trình (2) giải dễ dàng.

Đức Mai Văn
Xem chi tiết
Huyền
25 tháng 6 2019 lúc 10:18

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

tthnew
3 tháng 11 2019 lúc 9:24

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

Khách vãng lai đã xóa
Dương Thị Ngọc
Xem chi tiết
Ichigo Hollow
Xem chi tiết
Nguyễn Huy Thắng
20 tháng 3 2019 lúc 22:43

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

Nguyễn Huy Thắng
20 tháng 3 2019 lúc 22:48

caau a) binh phuong len ra no x=y tuong tu

Nguyễn Thành Trương
20 tháng 3 2019 lúc 14:03

c)

ĐK $y \geqslant 0$

Hệ đã cho tương đương với

$\left\{\begin{matrix} 2x^2+2xy+2x+6=0\\ (x+1)^2+3(y+1)+2xy=2\sqrt{y(x^2+2)} \end{matrix}\right.$

Trừ từng vế $2$ phương trình ta được

$x^2+2+2\sqrt{y(x^2+2)}-3y=0$

$\Leftrightarrow (\sqrt{x^2+2}-\sqrt{y})(\sqrt{x^2+2}+3\sqrt{y})=0$

$\Leftrightarrow x^2+2=y$

Kun ZERO
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 5 2020 lúc 22:53

a/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(2x+y\right)+x\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+x\right)\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=a\\2x+y=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ab=-6\\a+b=1\end{matrix}\right.\) với

Theo Viet đảo, a và b là nghiệm của:

\(t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=3\\2x+y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=-2\left(vn\right)\\2x+y=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-3=0\\y=-2x-2\end{matrix}\right.\) (bấm casio)

Nguyễn Việt Lâm
30 tháng 5 2020 lúc 22:55

b/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4-y^2\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=4\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

\(\Rightarrow2x^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

\(\Leftrightarrow2x^3=x^3+y^3\)

\(\Leftrightarrow x^3=y^3\Rightarrow x=y\)

Thay vào pt đầu:

\(2x^2=4\Rightarrow x^2=2\Rightarrow x=y=\pm\sqrt{2}\)

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 3 2021 lúc 5:58

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)

\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\) 

\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)

\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)

Thế vào pt dưới:

\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết

Miner Đức
Xem chi tiết
Trinh Tuyết Na
Xem chi tiết
Huyền
27 tháng 6 2019 lúc 22:06

1,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)\left(x+y\right)=0\\\sqrt{2x}+\sqrt{y+1}=2\left(\circledast\right)\end{matrix}\right.\)

\(\left(x-2y\right)\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-y\end{matrix}\right.\)

Th1:\(x=2y\) Thay vào \(\left(\circledast\right)\) , ta có :

\(\sqrt{4y}+\sqrt{y+1}=2\)

\(\Leftrightarrow2-2\sqrt{y}=\sqrt{y+1}\)\(\Leftrightarrow3y-8\sqrt{y}+3=0\)

Giải pt thu được (x;y)

Th2:x=-y thay vào \(\left(\circledast\right)\), ta có

\(\sqrt{-2x}+\sqrt{y+1}=2\)

Xét đk ta thấy:\(y\le0;y\ge-1\)(vô nghiệm)

Vậy ....

Huyền
27 tháng 6 2019 lúc 22:21

2,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)\left(x+y^2\right)=0\\\sqrt{x}+\sqrt{y+1}=2\end{matrix}\right.\)

\(\left(x-y-1\right)\left(x+y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y+1\\x=-y^2\end{matrix}\right.\)

Th1:\(x=y+1\)

Thay vào ta có:\(\sqrt{x}+\sqrt{x}=2\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)

Th2:\(x=-y^2\)thay vào ta có:

\(\sqrt{-y^2}+\sqrt{y+1}=2\)

\(-y^2\le0\) mà nhận thấy y=0 ko là nghiệm của pt

\(\Rightarrow\)Pt vô nghiệm

Kimian Hajan Ruventaren
Xem chi tiết
Trần Thanh Phương
28 tháng 3 2021 lúc 10:45

a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)

ĐKXĐ:...

\(\Rightarrow y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=2x^2-5xy-y^2\)

Từ giả thiết dễ thấy \(y\ne0\), chia cả 2 vế cho \(y^2\) ta được:

\(\dfrac{\sqrt{xy-2y^2}+\sqrt{4y^2-xy}}{y}=\dfrac{2x^2-5xy-y^2}{y^2}\)

\(\Leftrightarrow\sqrt{\dfrac{xy-2y^2}{y^2}}+\sqrt{\dfrac{4y^2-xy}{y^2}}=2\left(\dfrac{x}{y}\right)^2-\dfrac{5x}{y}-1\)

\(\Leftrightarrow\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}=2\left(\dfrac{x}{y}\right)^2-5\dfrac{x}{y}-1\)

Đặt \(\dfrac{x}{y}=t\) \(\left(2\le t\le4\right)\)

\(\Leftrightarrow\sqrt{t-2}+\sqrt{4-t}=2t^2-5t-1\)

\(\Leftrightarrow\sqrt{t-2}-1+\sqrt{4-t}-1=2t^2-5t-3\)

\(\Leftrightarrow\left(t-3\right)\left(2t+1\right)=\dfrac{t-3}{\sqrt{t-2}+1}+\dfrac{3-t}{\sqrt{4-t}+1}\)

\(\Leftrightarrow\left(t-3\right)\left(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}\right)=0\)

Xét \(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}=2t+\dfrac{\sqrt{t-2}}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}>0\forall t\)

\(\Rightarrow t-3=0\)

\(\Leftrightarrow t=3\)

\(\Leftrightarrow\dfrac{x}{y}=3\Leftrightarrow x=3y\)

Thế vào phương trình \(\left(1\right):2\cdot9y^2-5y\cdot3y-y^2-1=0\)

\(\Leftrightarrow2y^2-1=0\)

\(\Leftrightarrow y=\dfrac{1}{\sqrt{2}}\) do \(y>0\)

\(\Leftrightarrow x=\dfrac{3}{\sqrt{2}}\)

Vậy tập nghiệm của phương trình \(\left(x;y\right)=\left(\dfrac{3}{\sqrt{2}};\dfrac{1}{\sqrt{2}}\right)\)

b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)

Trừ theo vế 2 phương trình ta được:

\(x^3-y^3=2\left(x^2-y^2-2x+2y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-2\left(x+y\right)+4\right)=0\)

Xét phương trình \(x^2+x\left(y-2\right)+y^2-2y+4=0\)

\(\Delta_x=\left(y-2\right)^2-4\left(y^2-2y+4\right)=-3y^2+4y-8< 0\) nên phương trình vô nghiệm.

Do đó \(x=y\)

Thế vào phương trình \(\left(1\right):x^3+1=2x^2\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy...

Trần Thu Trang
Xem chi tiết
Đàm Vũ Đức Anh
24 tháng 2 2018 lúc 16:59

Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)

=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)

<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1

Câu 2 dùng vi-et đảo

Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới

Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ